Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(11): 1093-1097
DOI: 10.1055/a-1507-4275
DOI: 10.1055/a-1507-4275
letter
Cesium Carbonate Mediated Cyclization of Oxotryptamines with Allenoates: An Approach to Spiro[azepane-4,3′-indol]-2′(1′H)-ones
We are grateful for the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), sioczz201808, and the National Natural Science Foundation of China (21372250, 21121062, 21302203, 20732008, 21772037, 21772226, 21861132014 and 91956115).
Abstract
A new method was developed for the synthesis of spiro[azepane-4,3′-indol]-2′(1′H)-ones in yields of up to 96% with a broad substrate scope by using oxotryptamines as dual-nucleophilic reagents to react with allenoates in the presence of cesium carbonate under mild conditions. In accord with previous works and a deprotonation-tracing experiment, a plausible reaction mechanism is proposed.
Supporting Information
- id="SM000-1">Supporting information for this article is available online at https://doi.org/10.1055/a-1507-4275.
- Supporting Information
- CIF File
Publication History
Received: 13 April 2021
Accepted after revision: 11 May 2021
Accepted Manuscript online:
11 May 2021
Article published online:
02 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 1b Liu Y, McWhorter WW. J. Am. Chem. Soc. 2003; 125: 4240
- 1c Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
- 2a de Lucas AI, Vega JA, Matesanz E, Linares ML, García Molina A, Tresadern G, Lavreysen H, Trabanco AA, Cid JM. ACS Med. Chem. Lett. 2020; 11: 303
- 2b Pellegrino S, Ruscica M, Magni P, Vistoli G, Gelmi ML. Bioorg. Med. Chem. 2013; 21: 5470
- 2c Rojas-Duran R, González-Aspajo G, Ruiz-Martel C, Bourdy G, Doroteo-Ortega VH, Alban-Castillo J, Robert G, Auberger P, Deharo E. J. Ethnopharmacol. 2012; 143: 801
- 3a Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
- 3b Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
- 3c Williams RM, Cox RJ. Acc. Chem. Res. 2003; 36: 127
- 4a Sakla AP, Kansal P, Shankaraiah N. Org. Biomol. Chem. 2020; 18: 8572
- 4b Huang N, Zou L, Peng Y. Org. Lett. 2017; 19: 5806
- 4c Hajra S, Roy S, Maity S. Org. Lett. 2017; 19: 1998
- 4d Chai G.-L, Han J.-W, Wong HN. C. J. Org. Chem. 2017; 82: 12647
- 4e Kuang Y, Lu Y, Tang Y, Liu X, Lin L, Feng X. Org. Lett. 2014; 16: 4244
- 4f Schulz V, Davoust M, Lemarié M, Lohier J.-F, Sopkova de Oliveira Santos J, Metzner P, Brière J.-F. Org. Lett. 2007; 9: 1745
- 5a Qian C, Li P, Sun J. Angew. Chem. Int. Ed. 2021; 60: 5871
- 5b Huang Z.-C, Zou Y, Xiang M, Li C.-Y, Li X, Tian F, Wang L.-X. Org. Lett. 2021; 23: 2227
- 5c Akaev AA, Bezzubov SI, Desyatkin VG, Vorobyeva NS, Majouga AG, Melnikov MY, Budynina EM. J. Org. Chem. 2019; 84: 3340
- 5d Ryu H, Seo J, Ko HM. J. Org. Chem. 2018; 83: 14102
- 5e He W, Hu J, Wang P, Chen L, Ji K, Yang S, Li Y, Xie Z, Xie W. Angew. Chem. Int. Ed. 2018; 57: 3806
- 5f Gui H.-Z, Gao Y.-N, Wei Y, Shi M. Chem. Eur. J. 2018; 24: 10038
- 5g Zhu G, Wei Q, Chen H, Zhang Y, Shen W, Qu J, Wang B. Org. Lett. 2017; 19: 1862
- 6a Xu Y.-W, Li L, Hu X.-P. Org. Lett. 2020; 22: 9534
- 6b Sun Q.-S, Sun J, Pan L.-N, Yan C.-G. J. Org. Chem. 2020; 85: 12117
- 6c Luo Y, Zhang H, Wang S, Zhou Y, Dong S, Feng X. Org. Lett. 2020; 22: 2645
- 6d Lai Y.-H, Wu R.-S, Huang J, Huang J.-Y, Xu D.-Z. Org. Lett. 2020; 22: 3825
- 6e Sivasankara C, Satham L, Namboothiri IN. N. J. Org. Chem. 2017; 82: 12939
- 6f Wu H.-R, Cheng L, Kong D.-L, Huang H.-Y, Gu C.-L, Liu L, Wang D, Li C.-J. Org. Lett. 2016; 18: 1382
- 6g Wang S, Jiang Y, Wu S, Dong G, Miao Z, Zhang W, Sheng C. Org. Lett. 2016; 18: 1028
- 7a Halskov KS, Kniep F, Lauridsen VH, Iversen EH, Donslund BS, Jørgensen KA. J. Am. Chem. Soc. 2015; 137: 1685
- 7b Hell SM, Meyer CF, Laudadio G, Misale A, Willis MC, Noël T, Trabanco AA, Gouverneur V. J. Am. Chem. Soc. 2020; 142: 720
- 7c Overman LE, Poon DJ. Angew. Chem. Int. Ed. 1997; 36: 518
- 8 Nibbs AE, Montgomery TD, Zhu Y, Rawal VH. J. Org. Chem. 2015; 80: 4928
- 9 Liu J.-Y, Lu H, Li C.-G, Liang Y.-M, Xu P.-F. Synlett 2016; 27: 1287
- 10 Liu D, Hu Z, Zhang Y, Gong M, Fu Z, Huang W. Chem. Eur. J. 2019; 25: 11223
- 11 Bordwell FG. Acc. Chem. Res. 1988; 21: 456
- 12 CCDC 2022579 contains the supplementary crystallographic data for compound 3ba. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 13a Ni C, Chen J, Zhang Y, Hou Y, Wang D, Tong X, Zhu S.-F, Zhou Q.-L. Org. Lett. 2017; 19: 3668
- 13b Ni C, Yuan Y, Zhang Y, Chen J, Wang D, Tong X. Org. Biomol. Chem. 2017; 15: 4807
- 13c Wang Y.-F, He C.-Y, Hou L, Tian P, Lin G.-Q, Tong X. Synlett 2018; 29: 1176
- 13d Wu X.-Y, Gao Y.-N, Shi M. Eur. J. Org. Chem. 2019; 1620
- 14 Spiro[azepane-4,3′-indol]-2′(1′H)-ones 3aa–3am; General Procedure A dried 25 mL Schlenk tube was charged with the appropriate 3-(2-aminoethyl)indolin-2-one 2 (0.1 mmol, 1.0 equiv) and Cs2CO3 (0.2 mmol, 1.0 equiv), then evacuated and backfilled with argon three times. Allenoate 1 (0.24 mmol, 1.2 equiv) and anhyd MeCN (4.0 mL) were added under argon, and the mixture was stirred at 60 °C for 12 h. The mixture was then concentrated under reduced pressure and purified by flash chromatography [silica gel, PE–EtOAc (4:1)]. Ethyl {1′-Methyl-2′-oxo-1-tosyl-1,1′,2,2′,3,5-hexahydrospiro[azepine-4,3′-indol]-7-yl}acetate (3aa) White solid; yield: 90.0 mg (96%); mp 144–145 °C; Rf = 0.53 (PE–EtOAc, 2:1). IR (EtOH): 2932, 2249, 1707, 1610, 1493, 1344, 1156, 1085, 1026, 961, 910, 814 cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 7.83 (d, J = 8.4 Hz, 2 H), 7.57 (d, J = 7.4 Hz, 1 H), 7.35 (d, J = 8.0 Hz, 2 H), 7.27 (td, J = 7.7, 1.3 Hz, 1 H), 7.01 (td, J = 7.6, 1.1 Hz, 1 H), 6.84 (dd, J = 7.8, 0.9 Hz, 1 H), 5.60 (dd, J = 8.2, 6.0 Hz, 1 H), 4.21–4.05 (m, 3 H), 3.85 (d, J = 17.3 Hz, 1 H), 3.82–3.71 (m, 1 H), 3.40 (d, J = 17.4 Hz, 1 H), 3.16 (s, 3 H), 2.45 (s, 3 H), 2.29 (t, J = 11.6 Hz, 1 H), 2.20–2.10 (m, 1 H), 1.80 (dd, J = 14.2, 8.3 Hz, 1 H), 1.66 (d, J = 11.0 Hz, 1 H), 1.27 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 179.3, 170.9, 143.5, 142.6, 137.8, 136.9, 132.2, 129.6, 127.9, 127.0, 126.3, 124.6, 122.2, 108.0, 60.7, 44.8, 43.8, 41.8, 35.7, 31.8, 26.0, 21.4 (d, J = 1.7 Hz), 14.0. HRMS (ESI): m/z [M + H]+ Calcd for C25H29N2O5S: 469.1792; found: 469.1799.
For selected examples of natural and biologically active spirocyclic indoles, see:
For selected examples of natural and biologically active N-heterocyclic oxindoles, see:
For selected reviews on N-heterocyclic oxindoles, see:
For selected examples of three-membered spiro-N-heterocyclic oxindoles, see:
For selected examples of five-membered spiro-N-heterocyclic oxindoles, see:
For selected examples of six-membered spiro-N-heterocyclic oxindoles, see:
For selected examples of four-membered spiro-N-heterocyclic oxindoles, see: