Synthesis 2022; 54(07): 1857-1869
DOI: 10.1055/a-1638-5030
paper

I2/DMSO-Promoted Synthesis of Chromeno[4,3-b]quinolines through an Imine Formation/Aza-Diels–Alder/Aromatization Tandem Reaction under Metal-Catalyst- and Photosensitizer-Free Conditions

Angélica Peñaranda Gómez
a   Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
,
a   Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
,
Mario A. Macías
b   Crystallography and Chemistry of Materials, CrisQuimMat, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A 10, Bogotá 111711, Colombia
,
Cristian Ochoa-Puentes
c   Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia–Sede Bogotá, Carrera 45 No. 26-85, A.A. 5997, Bogotá, Colombia
,
a   Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
› Author Affiliations
We thank the Departamento Administrativo de Ciencia, Tecnología e Innovación (Colombian Institute for Science and Research, COLCIENCIAS) under the project No. 111574455595 contract 648-2017 for the financial support, and Universidad de Antioquia under contract 20730003-028-2018, as well as Fondo Nacional de Financiamiento para la Ciencia y la Tecnología y la Innovación 'Francisco José de Caldas­', Conv. 811, for fellowships.


Abstract

A tandem approach was developed for the efficient synthesis of substituted chromeno[4,3-b]quinolines from arylamines and O-cinnamyl salicylaldehydes under metal-catalyst- and photosensitizer-free reaction conditions. Our protocol is based on an inexpensive I2/DMSO system in which molecular iodine first acts as a Lewis acid to promote the formation of the corresponding imine bearing the alkene moiety; then, this species fulfills a second role by catalyzing an intramolecular aza-Diels–Alder cycloaddition to generate the respective tetrahydrochromenoquinoline as an intermediate. Finally, the dual behavior of DMSO as an oxidant and as a solvent proved crucial at this stage, allowing the regeneration of I2 and promoting the aromatization of the tetrahydrochromenoquinoline intermediates to yield the desired 7-aryl-6H-chromeno[4,3-b]quinolines. This protocol is mild and easy to perform, features high step-economy (tandem process) and provides a new access to biologically important nitrogen- and oxygen-containing heterocyclic molecules.

Supporting Information

Primary Data



Publication History

Received: 25 May 2021

Accepted after revision: 06 September 2021

Accepted Manuscript online:
06 September 2021

Article published online:
20 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
  • 2 Zhi L, Tegley C, Pio B, Edwards J, Motamedi M, Jones T, Marschke K, Mais D, Risek B, Schrader W. J. Med. Chem. 2003; 46: 4104
  • 3 Vu AT, Campbell AN, Harris HA, Unwalla RJ, Manas ES, Mewshaw RE. Bioorg. Med. Chem. Lett. 2007; 17: 4053
  • 4 Kumar AS, Kumar RA, Satyanarayana V, Reddy EP, Reddy BJ. M, Kumar DN, Khuranad A, Chandraiah G, Yadav JS. Nat. Prod. Commun. 2017; 12: 1129
  • 5 Anand Kumar A, Kulbhushan R, Mahendra K. Lett. Drug Des. Discovery 2014; 11: 594
  • 6 Hegab MI, Abdel-Fattah A.-SM, Yousef NM, Nour HF, Mostafa AM, Ellithey M. Arch. Pharm. Chem. Life Sci. 2007; 340: 396
  • 7 Kand D, Kalle AM, Varma SJ, Talukdar P. Chem. Commun. 2012; 48: 2722
  • 8 Kand D, Kalle AM, Talukdar P. Org. Biomol. Chem. 2013; 11: 1691
  • 9 Huang W, Lin W, Guan X. Tetrahedron Lett. 2014; 55: 116
  • 10 Jones W, Kiselyov AS. Tetrahedron Lett. 2000; 41: 2309
    • 11a Nagarajan R, Ramesh S, Gaddam V. Synlett 2010; 757
    • 11b Sharghi H, Khalifeh R, Rashidi Z. Mol. Diversity 2013; 17: 721
    • 11c Rahimzadeh G, Soheilizad M, Kianmehr E, Larijani B, Mahdavic M. ARKIVOC 2018; (v): 20
  • 12 Yu X, Wang J, Xu Z, Yamamoto Y, Bao M. Org. Lett. 2016; 18: 2491
  • 13 Aradi K, Bombicz P, Novak Z. J. Org. Chem. 2016; 81: 920
  • 14 Shiri M, Fathollahi-Lahroud M, Yasaei Z. Tetrahedron 2017; 73: 2501
  • 15 Dong W, Yuan Y, Gao X, Hu B, Xie X, Zhang Z. ChemCatChem 2018; 10: 2878
    • 16a Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 16b Plesniak MP, Huang H.-M, Procter DJ. Nat. Rev. Chem. 2017; 1: 0077
  • 17 Behr A, Vorholt AJ, Ostrowski KA, Seidensticker T. Green Chem. 2014; 16: 982
    • 18a Echeverry-Gonzalez CA, Puerto Galvis CE, Borca CH, Mosquera MA, Luis-Robles AF, Kouznetsov VV. Org. Chem. Front. 2019; 6: 3374
    • 18b Peñaranda Gómez A, Rodríguez Bejarano O, Kouznetsov VV, Ochoa-Puentes C. ACS Sustainable Chem. Eng. 2019; 7: 18630
    • 18c Orozco D, Kouznetsov VV, Bermúdez A, Vargas Méndez LY, Mendoza Salgado AR, Meléndez Gómez CM. RSC Adv. 2020; 10: 4876
    • 19a Jia X, Peng F, Qing C, Huo C, Wang X. Org. Lett. 2012; 14: 4030
    • 19b Jia X, Wang Y, Peng F, Huo C, Yu L, Liu J, Wang X. J. Org. Chem. 2013; 78: 9450
    • 19c Wang Y, Peng F, Liu J, Huo C, Wang X, Jia X. J. Org. Chem. 2015; 80: 609
  • 20 Liu J, Liu F, Zhu Y, Ma X, Jia X. Org. Lett. 2015; 17: 1409
  • 21 Mandal S, Bera T, Dubey G, Saha J, Laha JK. ACS Catal. 2018; 8: 5085
    • 22a Reddy PN, Subba Reddy BV, Padmaja P. Curr. Org. Synth. 2018; 15: 815
    • 22b Monga A, Bagchi S, Sharma A. New J. Chem. 2018; 42: 1551
    • 23a Wu Y.-D, Geng X, Gao Q, Zhang J, Wu X, Wu A.-X. Org. Chem. Front. 2016; 3: 1430
    • 23b Yi X, Jiao L, Xi C. Org. Biomol. Chem. 2016; 14: 9912
  • 24 Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Adv. Synth. Catal. 2020; 362: 65
  • 25 Kouznetsov VV. Tetrahedron 2009; 65: 2721
  • 26 Le ST, Yasuoka C, Asahara H, Nishiwaki N. Molecules 2016; 21: 827
  • 27 Mohammed S, Vishwakarma RA, Bharate SB. J. Org. Chem. 2015; 80: 6915
  • 28 Rafique J, Saba S, Rosrio AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
    • 29a Li X, Mao Z, Wang Y, Chen W, Lin X. Tetrahedron 2011; 67: 3858
    • 29b Gao Q, Liu S, Wu X, Zhang J, Wu A. J. Org. Chem. 2015; 80: 5984
    • 29c Jin G, Zhao J, Han J, Zhu S, Zhang J. Tetrahedron 2010; 66: 913
  • 30 Zhou P, Pan Y, Tan H, Liu W. J. Org. Chem. 2019; 84: 1566
  • 31 CrysAlisPro 1.171.39.46e; Rigaku Oxford Diffraction, 2018.
  • 32 CCDC 2055070 (8a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 33 Twin H, Batey RA. Org. Lett. 2004; 6: 4913