Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(20): 2067-2070
DOI: 10.1055/a-1644-4876
DOI: 10.1055/a-1644-4876
letter
Photodriven Dehydrogenative Homocoupling of Benzylic C–H Bonds Forming Strained C–C Bonds
This work was supported by the Japan Society for the Promotion of Science [JSPS KAKENHI Grant Numbers JP20H04810 (Hybrid Catalysis, N.I.) and JP21J12846 (T.K.)].

Abstract
A photoinduced dehydrogenative homocoupling reaction of alkylarenes is reported. Gaseous hydrogen is evolved as the sole byproduct and neither oxidants nor hydrogen acceptors are required. The present reaction offers an environmentally benign and atom-economical means for forming sterically strained C–C single bonds. It also gives a remarkable example of photodriven reactions overcoming a considerable rise in energy.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1644-4876.
- Supporting Information
Publication History
Received: 25 August 2021
Accepted after revision: 14 September 2021
Accepted Manuscript online:
14 September 2021
Article published online:
01 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Hook SC. W. Tetrahedron Lett. 1975; 38: 3321
- 1b McMurry JE, Silvestri M. J. Org. Chem. 1975; 40: 2687
- 1c Popielarz R, Arnold DR. J. Am. Chem. Soc. 1990; 112: 3068
- 2a Kolbe H. Ann. Chem. Pharm. 1848; 64: 339
- 2b Habibi MM, Farhadi S. Tetrahedron Lett. 1999; 40: 2821
- 2c Kodama T, Kubo M, Shinji W, Ohkubo K, Tobisu M. Chem. Sci. 2020; 11: 12109
- 3 Nelson SF, Bartlett PD. J. Am. Chem. Soc. 1966; 88: 137
- 4 Resendiz MJ. E, Garcia-Garibay MA. Org. Lett. 2005; 7: 371
- 5a Huang RL, Kum-Tatt L. J. Chem. Soc. 1954; 2570
- 5b Wang Z.-J, Lv J.-J, Yi R.-N, Xiao M, Feng J.-J, Liang Z.-W, Wang A.-J, Xu X. Adv. Synth. Catal. 2018; 360: 932
- 6a Kawasaki T, Ishida N, Murakami M. J. Am. Chem. Soc. 2020; 142: 3366
- 6b Kawasaki T, Ishida N, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 18267
- 6c Kawasaki T, Yamazaki K, Tomono R, Ishida N, Murakami M. Chem. Lett. 2021; 50: 1684
- 7a Zhang P, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
- 7b Rohe S, Morris AO, MacCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
- 7c Wang Z, Ji X, Han T, Deng G.-J, Huang H. Adv. Synth. Catal. 2019; 361: 5643
- 7d Shu X, Huan L, Huang Q, Huo H. J. Am. Chem. Soc. 2020; 142: 19058
- 7e Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
- 8 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
- 9 Durandetti M, Devaud M, Perichon J. New J. Chem. 1996; 20: 659
- 10 When the reaction was performed in the presence of TEMPO, it trapped the benzylic radical intermediate.6a
- 11 Powers DC, Anderson BL, Nocera DG. J. Am. Chem. Soc. 2013; 135: 18876
- 12 DFT calculations at the ωB97XD/6-31+G (d) level of theory; at 298 K in gas phase.
- 13a Wang H, Gao X, Lv Z, Abdeliah T, Lei A. Chem. Rev. 2019; 119: 6769
- 13b Singh K, Staig SJ, Weaver JD. J. Am. Chem. Soc. 2014; 136: 5275
- 13c Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
- 13d Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
- 13e Ota E, Wang H, Frye NL, Knowles RR. J. Am. Chem. Soc. 2019; 141: 1457 ; and references cited therein
- 14 Dehydrogenative Coupling of 1: a Typical Procedure To an oven-dried 5 mL Schlenk tube were added cumene 1 (24.3 mg, 0.20 mmol), (Ir[dF(CF3)ppy]2dtbbpy)PF6 (4.5 mg, 0.004 mmol), NiBr2(dtbbpy) (2.0 mg, 0.004 mmol), and ethyl acetate (5.0 mL) under a nitrogen atmosphere. The tube was capped with rubber septa, and the solution was stirred and irradiated with blue LEDs at room temperature for 24 h. Then, the resulting mixture was filtrated through a short column of silica gel using ethyl acetate as the eluent. The filtrate was concentrated under reduced pressure. The residue was purified by PTLC (hexane/dichloromethane = 5:1, Rf = 0.5) to give 2,3-dimethyl-2,3-diphenylbutane (2, 20.2 mg, 0.085 mmol, 84%) as white solids. 1H NMR (400 MHz, CDCl3): δ = 7.15–7.24 (m, 6 H), 7.03–7.12 (m, 4 H), 1.32 (s, 12 H). 13C NMR (100 MHz, CDCl3): δ = 146.8, 128.6, 126.6, 125.5, 43.6, 25.2. The NMR spectra were in agreement with those reported.4
See also:
See also:
A review on dehydrogenative coupling that includes energetically uphill ones:
Selected examples: