Synlett 2022; 33(01): 84-87 DOI: 10.1055/a-1666-9533
Intermolecular Nucleophilic Addition Reaction of a C-7 Anion from N -[Bis(dimethylamino)phosphoryl]indole to Electrophiles/Arynes: Synthesis of 7-Substituted Indoles
Esha Sharma
a
SRF Limited Block C, Greenwood City, Sector 45, Gurugram Haryana 122003, India
,
Manjot Kaur
b
Mehr Chand Mahajan DAV College for Women, Sector-36, Chandigarh, India
c
Department of Chemistry, Panjab University, Chandigarh, India
,
Babaldeep Kaur
c
Department of Chemistry, Panjab University, Chandigarh, India
,
Amarjit Kaur
c
Department of Chemistry, Panjab University, Chandigarh, India
,
Paramjit Singh
c
Department of Chemistry, Panjab University, Chandigarh, India
,
Kamal Nain Singh∗
c
Department of Chemistry, Panjab University, Chandigarh, India
› Author Affiliations
Abstract
A novel approach to the C-7 substitution of N -[bis(dimethylamino)phosphoryl]indole by nucleophilic addition of the corresponding C-7 carbanion to electrophiles or arynes is described. The directing group can be easily removed, providing a simple route to the synthesis of 7-functionalized indoles.
Key words indoles - lithiation - arylation - substitution - directing groups
References and Notes
1a
Horton DA,
Bourne GT,
Smythe ML.
Chem. Rev. 2003; 103: 893
1b
Taylor RD,
MacCoss M,
Lawson DG. A.
J. Med. Chem. 2014; 57: 5845 . Li G. Y., Yang T., Luo Y.-G., Chen X.-Z., Fang D.-M., Zhang G.-L.; Org. Lett.; 2009, 11: 3714
1c
Cai S,
Sun S,
Peng J,
Kong X,
Zhou H,
Zhu T,
Gu Q,
Li D.
Tetrahedron 2014; 71: 3715
1d
Tsukamoto S,
Kato H,
Samizo M,
Nojiri Y,
Onuki H,
Hirota H,
Ohta T.
J. Nat. Prod. 2008; 71: 2064 ; corrigendum: J. Nat. Prod. 2013, 76, 1233
1e
Fujimoto H,
Sumino M,
Okuyama E,
Ishibashi M.
J. Nat. Prod. 2004; 67: 98
1f
Kuramochi K,
Ohnishi K,
Fujieda S,
Nakajima M,
Saitoh Y,
Watanabe N,
Takeuchi T,
Nakazaki A,
Sugawara F,
Arai T,
Kobayashi S.
Chem. Pharm. Bull. 2008; 56: 1738
1g
De Guzman FS,
Gloer JB,
Wicklow DT,
Dowd PF.
J. Nat. Prod. 1992; 55: 931
2a
Garfunkle J,
Kimball FS,
Trzupek JD,
Takizawa S,
Shimamura H,
Tomishima M,
Boger DL.
J. Am. Chem. Soc. 2009; 131: 16036
2b
Takashima M,
Sakai H.
Bull. Agric. Chem. Soc. Jpn. 1960; 24: 647
2c
Yeung K.-S,
Qiu Z,
Xue Q,
Fang H,
Yang Z,
Zadjura L,
D’Arienzo CJ,
Eggers BJ,
Riccardi K,
Shi P.-Y,
Gong Y.-F,
Browning MR,
Gao Q,
Hansel S,
Santone K,
Lin P.-F,
Meanwell NA,
Kadow JF.
Bioorg. Med. Chem. Lett. 2013; 23: 198
3a
Humber L . G,
Ferdinandi E,
Demerson CA,
Ahmed S,
Shah U,
Mobilio D,
Sabatucci J,
De Lange B,
Labbadia F,
Hughes P,
DeVirgilio J,
Neuman G,
Chau TT,
Weichman BM.
J. Med. Chem. 1988; 31: 1712
3b
Awakawa T,
Zhang L,
Wakimoto T,
Hoshino S,
Mori T,
Ito T,
Ishikawa J,
Tanner ME,
Abe I.
J. Am. Chem. Soc. 2014; 136: 9910
3c
Boonyarat C,
Yenjai C,
Vajragupta O,
Waiwut P.
Asian Pac. J. Cancer Prev. 2014; 15: 10483
4a
Prabagar B,
Yang Y,
Shi Z.
Chem. Soc. Rev. 2021; 50: 11249
4b
Wen J,
Shi Z.
Acc. Chem. Res. 2021; 54: 1723
4c
Yang Y,
Qiu X,
Zhao Y,
Mu Y,
Shi Z.
J. Am. Chem. Soc. 2016; 138: 495
5
Joule JA,
Mills K.
Heterocyclic Chemistry , 5th ed. Wiley; Chichester: 2010
6a
Campbell AN,
Meyer EB,
Stahl SS.
Chem. Commun. 2011; 47: 10257
6b
Ikemoto H,
Yoshino T,
Sakata K,
Matsunaga S,
Kanai M.
J. Am. Chem. Soc. 2014; 136: 5424
6c
Islam S,
Larrosa I.
Chem. Eur. J. 2013; 19: 15093
6d
Zhao D,
Kim JH,
Stegemann L,
Strassert CA,
Glorius F.
Angew. Chem. Int. Ed. 2015; 54: 4508
6e
Rewcastle GW,
Katrizky AR.
Adv. Heterocycl. Chem. 1993; 56: 155
7a
Fukuda T,
Maeda R,
Iwao M.
Tetrahedron 1999; 55: 9151
7b
Hartung CG,
Fecher A,
Chapell B,
Snieckus V.
Org. Lett. 2003; 5: 1899
8
Leonoria D,
Coldham I.
Adv. Synth. Catal. 2009; 351: 2619
9a
Song Z,
Samanta R,
Antonchick AP.
Org. Lett. 2013; 15: 5662
9b
Xu L,
Zhang C,
He Y,
Tan L,
Ma D.
Angew. Chem. Int. Ed. 2016; 55: 321
9c
Iagafarova IE,
Vorobyeva DV,
Loginov DA,
Peregudov AS,
Osipov SN.
Eur. J. Org. Chem. 2017; 840
10a
Leitch JA,
Bhonoah Y,
Christopher GF.
ACS Catal. 2017; 7: 5618
10b
Yang Y,
Shi Z.
Chem. Commun. 2018; 54: 1676
11
Quan Y,
Lan G,
Shi W,
Xu Z,
Fan Z,
Fan Y,
You E,
Jiang X,
Wang C,
Lin W.
Angew. Chem. Int. Ed. 2021; 60: 3115
12
C-7 Substitution of N -[Bis(dimethylamino)phosphoryl] indole (1); General Procedure
A flame-dried, two-necked, round-bottomed flask equipped with a magnetic stirrer bar, a septum cap, and a bubbler was charged with a solution of protected indole 1 (0.5 g, 1 equiv) in anhyd THF (10 mL) under an inert atmosphere. The solution was cooled to –78 °C and BuLi (2.2 equiv) was added dropwise. An orange-red color appeared immediately, and the solution was stirred at –78 °C for 15 minutes. The appropriate electrophile (2.2 equiv) was then added, and the reaction mixture was stirred at –78 °C for another 30 min. The reaction was then quenched with sat. aq NH4 Cl (20 mL), and the mixture was added to Et2 O (20 mL). The organic layer was separated, and the aqueous layer was further extracted with Et2 O (2 × 10 mL). The combined organic layer was washed with brine, dried (Na2 SO4 ), and concentrated under reduced pressure to obtain a crude product that was purified by flash chromatography [silica gel (230–400 mesh), hexane–EtOAc].
N -[Bis(dimethylamino)phosphoryl)-7-methylindole (3a)
Clear viscous oil; yield: 0.52 g (99%). 1 H NMR (400 MHz, CDCl3 ): δ = 7.63–7.61 (m, 1 H,), 7.46–7.44 (m, 1 H), 7.17–7.10 (m, 2 H), 6.36–6.35 (m, 1 H), 2.69 (s, 6 H), 2.66 (s, 6 H), 2.55 (s, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 140.3, 140.2, 139.4, 139.3, 130.6, 130.5, 122.9, 121.3, 119.5, 113.7, 107.5, 107.4, 36.6, 36.5, 16.0. HRMS (ES+ ): m/z [M + H]+ calcd for C13 H21 N3 OP: 266.1422; found: 266.1316.
Deprotection of C-7-Functionalized N -[Bis(dimethylamino)phosphoryl)indoles; General Procedure
A single-necked round-bottomed flask equipped with a magnetic stirrer bar and drying tube was charged with a solution of the appropriate C-7-substituted protected indole 3 (1 equiv) in anhyd THF (10 mL), and LAH (1.1 equiv) was added at 0 °C. After completion of the addition of LAH, the ice bath was removed and the mixture was stirred at rt for 2 h. The mixture was then cooled to 0 °C and the reaction was quenched with 15% aq NaOH (5 mL). The mixture was extracted with CHCl3 (3 × 10 mL). The organic layer was washed with brine, dried, and concentrated under reduced pressure to afford a crude product that was purified by column chromatography [silica gel (60–120 mesh) hexane–EtOAc (4:1)].
7-Methyl-1H -indole (4a)
Light-brown solid; yield: 0.12 g (99%); mp 84–86 °C (Lit.11 85 °C). 1 H NMR (400 MHz, CDCl3 ): δ = 7.76 (br s, 1 H), 7.51 (d, J = 7.56 Hz, 1 H), 7.25–7.22 (m, 1 H), 7.19–7.03 (m, 2 H), 6.20 (s, 1 H), 2.41 (s, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 138.0, 129.0, 124.1, 122.0, 120.9, 119.8, 119.6, 102.6, 13.7.