Synlett 2022; 33(10): 919-926 DOI: 10.1055/a-1755-3090
Evolution of a Reagent-Controlled Strategy for β-Selective C -Glycoside Synthesis
Clay S. Bennett∗
We thank the National Science Foundation (CHE-1300334, CHE-1566233, and CHE-1954841) and the National Institutes of Health (NIH) common fund (U01-GM120414) for generously support this research program.
Abstract
C -Alkyl glycosides represent an attractive class of nonhydrolyzable carbohydrate mimetics which possess enormous potential as next-generation therapeutics. Methods for the direct stereoselective synthesis of C -alkyl glycosides with a broad substrate tolerance are limited, however. This is especially in the case of β-linked C -alkyl glycosides, where direct methods for synthesis from commonly available coupling partners remain limited. This Account describes the evolution of our laboratory’s studies on glycosyl sulfonate chemistry from a method for the construction of simple β-linked 2-deoxy-sugars to a technology for the direct synthesis of β-linked acyl and homoacyl glycosides that can be elaborated into more complex structures.
1 Introduction
2 Glycosyl Sulfonates
3 Glycosyl Sulfonates in Oligosaccharide Synthesis
4 Matching Donor and Sulfonate Reactivity
5 β-Linked C -Acyl and Homoacyl Glycoside Synthesis
6 Elaboration to other Products
7 Conclusion
Key words
glycosylation -
C–C-bond-forming reactions -
glycoconjugates -
S
N 2 reactions -
reactivity
Publication History
Received: 21 January 2022
Accepted: 31 January 2022
Accepted Manuscript online: 31 January 2022
Article published online: 21 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Wang S.-K,
Cheng C.-M.
Chem. Commun. 2015; 51: 16750
2
Astronomo RD,
Burton DR.
Nat. Rev. Drug Discovery 2010; 9: 308
3
Yang Y,
Yu B.
Chem. Rev. 2017; 117: 12281
4a
Aseniso JL,
Espinosa JF,
Dietrich H,
Cañada FJ,
Schmidt RR,
Martín-Lomas M,
André S,
Gabius H.-J,
Jiménez-Barbero J.
J. Am. Chem. Soc. 1999; 121: 8995
4b
García-Herrero A,
Montero E,
Muñoz JL,
Espinosa JF,
Vián A,
García JL,
Asensio JF,
Cañada FJ,
Jiménez-Barbero J.
J. Am. Chem. Soc. 2002; 124: 4804
4c
Hirai G,
Kato M,
Koshino H,
Nishizawa E,
Oonuma K,
Ota E,
Watanabe T,
Hashizume D,
Tamura Y,
Okada M,
Miyagi T,
Sodeoka M.
JACS Au 2021; 1: 137
4d
Wei A,
Haudrechy A,
Audin CA,
Jun H.-S,
Haudrechy-Bretel N,
Kishi Y.
J. Org. Chem. 1995; 60: 2160
4e
Rubinstenn G,
Sinaÿ P,
Berthault P.
J. Phys. Chem. A 1997; 101: 2536
5a
Ravishankar R,
Surolia A,
Vijayan M,
Lim S,
Kishi Y.
J. Am. Chem. Soc. 1998; 120: 11297
5b
Helmboldt A,
Petitou M,
Mallet J.-M,
Hérault J.-P,
Lormeau J.-C,
Driguez PA,
Herbert J.-M,
Sinaÿ P.
Bioorg. Med. Chem. Lett. 1997; 7: 1507
5c
Wang J,
Kováč P,
Sinäy P,
Glaudemans CP. J.
Carbohydr. Res. 1998; 308: 191
5d
Pasquarello C,
Demange R,
Vogel P.
Bioorg. Med. Chem. Lett. 1999; 9: 793
5e
Wei A,
Boy KM,
Kishi Y.
J. Am. Chem. Soc. 1995; 117: 9432
5f
Espinosa JF,
Montero E,
Vian A,
García JL,
Dietrich H,
Schmidt RR,
Martín-Lomas M,
Cañada FJ,
Jiménez-Barbero J.
J. Am. Chem. Soc. 1998; 120: 1309
6
Yang G,
Schmieg J,
Tsuji M,
Franck RW.
Angew. Chem. Int. Ed. 2004; 43: 3818
7
Giese B,
Witzel Y.
Angew. Chem., Int. Ed. Engl. 1986; 25: 450
8
Masuda K,
Nagamoto M,
Inoue M.
Nat. Chem. 2017; 9: 207
9a
MacDougall JM,
Zhang X.-D,
Polgar WE,
Khroyan TV,
Toll L,
Cashman JR.
Bioorg. Med. Chem. Lett. 2005; 15: 1583
9b
Reddy MR,
Aidhen IS,
Shruthi K,
Reddy GB.
Eur. J. Org. Chem. 2017; 7283
9c
Reddy MR,
Hemaiswarya S,
Kommidi H,
Aiden IS,
Doble M.
Eur. J. Org. Chem. 2019; 6053
10
Zhu F,
Rodriguez J,
O’Neill S,
Walczak M.
ACS Cent. Sci. 2018; 4: 1652
11
Noel A,
Delpech B,
Crich D.
Org. Lett. 2012; 14: 1342
12
Bennett CS,
Galan MC.
Chem. Rev. 2018; 118: 7931
13a
Roush WR,
Bennett CE.
J. Am. Chem. Soc. 1999; 121: 3541
13b
Yang X,
Fu B,
Yu B.
J. Am. Chem. Soc. 2011; 133: 12433
14
Babu RS,
Zhou M,
O’Doherty GA.
J. Am. Chem. Soc. 2004; 126: 3428
15
Martin A,
Arda A,
Désiré J,
Martin-Mingot A,
Probst N,
Sinaÿ P,
Jinénez-Barbero J,
Thibaudeau S,
Blériot Y.
Nat. Chem. 2016; 8: 186
16
Crich D.
J. Am. Chem. Soc. 2021; 43: 17
17
Guo Y,
Sulikowski GA.
J. Am. Chem. Soc. 1998; 120: 1392
18
Morris WJ,
Shair MD.
Org. Lett. 2009; 11: 9
19
Issa JP,
Lloyd D,
Steliotes E,
Bennett CS.
Org. Lett. 2013; 15: 4170
20
Issa JP,
Bennett CS.
J. Am. Chem. Soc. 2014; 136: 5740
21
Elshahawi SI,
Shaaban KA,
Kharel M,
Thorson JS.
Chem. Soc. Rev. 2015; 44: 7591
22
Lloyd D,
Bennett CS.
Chem. Eur. J. 2018; 24: 7610
23
Mizia JC,
Bennett CS.
Org. Lett. 2019; 21: 5922
24
Yalamanchili S,
Lloyd D,
Bennett CS.
Org. Lett. 2019; 21: 3674
25
Yu B,
Wang P.
Org. Lett. 2002; 4: 1919
26a
Lee J,
Kang J,
Lee S,
Rhee YH.
Angew. Chem. Int. Ed. 2020; 59: 2439
26b
Xie T,
Zheng C,
Chen K,
He H,
Gao S.
Angew. Chem. Int. Ed. 2020; 59: 4360
26c
Chen K,
Xie T,
Shen Y,
He H,
Zhao X,
Gao S.
Org. Lett. 2021; 23: 1769
27
Zhang Z,
Ollmann IR,
Ye X.-S,
Wischnat R,
Baasov T,
Wong C.-H.
J. Am. Chem. Soc. 1999; 121: 734
28
Chen J.-H,
Ruei J.-H,
Mong K.-KT.
Eur. J. Org. Chem. 2014; 1827
29
Zhou M.-H,
Wilbur DJ,
Kwan EE,
Bennett CS.
J. Am. Chem. Soc. 2019; 141: 16743
30a
Meyer MP,
DelMonte AJ,
Singleton DA.
J. Am. Chem. Soc. 1999; 121: 10865
30b
Kwan EE,
Park Y,
Besser HA,
Anderson TL,
Jacobsen EN.
J. Am. Chem. Soc. 2017; 139: 43
31
Yang C.-T,
Zhang Z.-Q,
Liang J,
Liu J.-H,
Lu X.-Y,
Chen H.-H,
Liu L.
J. Am. Chem. Soc. 2012; 134: 11124
32
Ling J,
Bennett CS.
Angew. Chem. Int. Ed. 2020; 59: 4304
33
Quintard A,
Rodriguez J.
ACS Catal. 2017; 7: 5513
34
Babu RS,
Chen Q,
Kang S.-W,
Zhou M,
O’Doherty GA.
J. Am. Chem. Soc. 2012; 134: 11952
35
Mizia JC,
Syed MU,
Bennett CS.
Org. Lett 2022; 24: 731