Synlett 2022; 33(16): 1575-1581
DOI: 10.1055/a-1840-5199
synpacts

Visible-Light-Induced Organocatalyzed [2+1] Cyclization of Alkynes and (Trifluoroacetyl)silanes

Gang Zhou
,
Xiao Shen
We are grateful to NSFC (21901191), Fundamental Research Funds for the Central Universities, and Wuhan University for financial support.


Abstract

The synthesis of common cyclopropenes has been widely studied, but the synthesis of cyclopropenols is a significant challenge. Here, we highlight our recent work on the synthesis of trifluoromethylated cyclopropenols through a [2+1] cycloaddition reaction between alkynes and (trifluoroacetyl)silanes under visible-light-induced organocatalysis. The novel amphiphilic donor–acceptor carbenes derived from (trifluoroacetyl)silanes can react effectively with both activated and nonactivated alkynes. A broad substrate scope and a good functional-group tolerance have been achieved. Moreover, the synthetic potential of this reaction was highlighted by a gram-scale reaction and the one-pot diastereoselective synthesis of trifluoromethylated cyclopropanols.



Publication History

Received: 29 March 2022

Accepted after revision: 01 May 2022

Accepted Manuscript online:
01 May 2022

Article published online:
07 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bach RD, Dmitrenko O. J. Am. Chem. Soc. 2004; 126: 4444
  • 2 Vicente R. Chem. Rev. 2021; 121: 162
  • 3 Elling BR, Su JK, Xia Y. Acc. Chem. Res. 2021; 54: 356
  • 4 Jiang T, Laughlin ST. Meth. Enzymol. 2020; 641: 1
  • 5 Li P, Zhang X, Shi M. Chem. Commun. 2020; 56: 5457
  • 6 Prasad RB, Nayak S, Ranjan MD, Das T, Mohapatra S, Priyadarsini MN. Asian J. Org. Chem. 2020; 9: 1088
  • 7 Vicente R. Synthesis 2016; 48: 2343
  • 8 Archambeau A, Miege F, Meyer C, Cossy J. Acc. Chem. Res. 2015; 48: 1021
  • 9 Zhu Z.-B, Wei Y, Shi M. Chem. Soc. Rev. 2011; 40: 5534
  • 10 Nie S, Lu A, Kuker EL, Dong VM. J. Am. Chem. Soc. 2021; 143: 6176
  • 11 Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Angew. Chem. Int. Ed. 2021; 60: 11804
  • 12 Muriel B, Waser J. Angew. Chem. Int. Ed. 2021; 60: 4075
  • 13 Zhang Z, Gao Y, Chen S, Wang J. J. Am. Chem. Soc. 2021; 143: 17806
  • 14 Jiang Z, Niu S.-L, Zeng Q, Ouyang Q, Chen Y.-C, Xiao Q. Angew. Chem. Int. Ed. 2021; 60: 297
  • 15 Huang W, Meng F. Angew. Chem. Int. Ed. 2021; 60: 2694
  • 16 Zhang M, Li H, Zhao J, Li Y, Zhang Q. Chem. Sci. 2021; 12: 11805
  • 17 Wang X.-B, Zheng Z.-J, Xie J.-L, Gu X.-W, Mu Q.-C, Yin G.-W, Ye F, Xu Z, Xu L.-W. Angew. Chem. Int. Ed. 2020; 59: 790
  • 18 Chen K, Arnold FH. J. Am. Chem. Soc. 2020; 142: 6891
  • 19 Liang X.-T, Chen J.-H, Yang Z. J. Am. Chem. Soc. 2020; 142: 8116
  • 20 Zheng H, Doyle MP. Angew. Chem. Int. Ed. 2019; 58: 12502
  • 21 Zhang Z.-Q, Zheng M.-M, Xue X.-S, Marek I, Zhang F.-G, Ma J.-A. Angew. Chem. Int. Ed. 2019; 58: 18191
  • 22 Mata S, López LA, Vicente R. Angew. Chem. Int. Ed. 2018; 57: 11422
  • 23 Teng H.-L, Luo Y, Nishiura M, Hou Z. J. Am. Chem. Soc. 2017; 139: 16506
  • 24 DeBoer CD. J. Chem. Soc., Chem. Commun. 1972; 377
  • 25 Kinjo R, Ishida Y, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2009; 48: 517
  • 26 Wolff S, Agosta WC. J. Am. Chem. Soc. 1984; 106: 2363
  • 27 Priebbenow DL. Adv. Synth. Catal. 2020; 362: 1927
  • 28 Zhang H.-J, Priebbenow DL, Bolm C. Chem. Soc. Rev. 2013; 42: 8540
  • 29 Zhang H.-J, Becker P, Huang H, Pirwerdjan R, Pan F.-F, Bolm C. Adv. Synth. Catal. 2012; 354: 2157
  • 30 Becker P, Priebbenow DL, Pirwerdjan R, Bolm C. Angew. Chem. Int. Ed. 2014; 53: 269
  • 31 Becker P, Pirwerdjan R, Bolm C. Angew. Chem. Int. Ed. 2015; 54: 15493
  • 32 Priebbenow DL. J. Org. Chem. 2019; 84: 11813
  • 33 Shen Z, Dong VM. Angew. Chem. Int. Ed. 2009; 48: 784
  • 34 Ishida K, Yamazaki H, Hagiwara C, Abe M, Kusama H. Chem. Eur. J. 2020; 26: 1249
  • 35 Ishida K, Tobita F, Kusama H. Chem. Eur. J. 2018; 24: 543
  • 36 Ito K, Tamashima H, Iwasawa N, Kusama H. J. Am. Chem. Soc. 2011; 133: 3716
  • 37 Ye J.-H, Quach L, Paulisch T, Glorius F. J. Am. Chem. Soc. 2019; 141: 16227
  • 38 Priebbenow DL, Pilkington RL, Hearn KN, Polyzos A. Org. Lett. 2021; 23: 2783
  • 39 Ma L, Yu Y, Xin L, Zhu L, Xia J, Ou P, Huang X. Adv. Synth. Catal. 2021; 363: 2573
  • 40 Fan Z, Yi Y, Chen S, Xi C. Org. Lett. 2021; 23: 2303
  • 41 Ye J.-H, Bellotti P, Paulisch TO, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 13671
  • 42 Stuckhardt C, Wissing M, Studer A. Angew. Chem. Int. Ed. 2021; 60: 18605
  • 43 Becker P, Priebbenow DL, Zhang H.-J, Pirwerdjan R, Bolm C. J. Org. Chem. 2014; 79: 814
  • 44 Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem. Soc. Rev. 2020; 49: 908
  • 45 Liu J, Xing X.-N, Huang J.-H, Lu L.-Q, Xiao W.-J. Chem. Sci. 2020; 11: 10605
  • 46 Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
  • 47 Moss RA, Zdrojewski T, Ho G.-J. J. Chem. Soc., Chem. Commun. 1991; 946
  • 48 Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley–VCH; Weinheim: 2013
  • 49 Decaens J, Couve-Bonnaire S, Charette AB, Poisson T, Jubault P. Chem. Eur. J. 2021; 27: 2935
  • 50 Xiao H, Zhang Z, Fang Y, Zhu L, Li C. Chem. Soc. Rev. 2021; 50: 6308
  • 51 Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
  • 52 Wang J, Sanchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 53 Zhou G, Shen X. Angew. Chem. Int. Ed. 2022; 61: e202115334
  • 54 Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
  • 55 Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
  • 56 Strieth-Kalthoff F, Glorius F. Chem 2020; 6: 1888
  • 57 Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Chem. Rev. 2022; 122: 2650
  • 58 Ma J, Chen S, Bellotti P, Guo R, Schäfer F, Heusler A, Zhang X, Daniliuc C, Brown MK, Houk KN, Glorius F. Science 2021; 371: 1338
  • 59 Zhu M, Huang X.-L, Xu H, Zhang X, Zheng C, You S.-L. CCS Chem. 2021; 3: 652
  • 60 Molloy J, Schäfer M, Wienhold M, Morack T, Daniliuc CG, Gilmour R. Science 2020; 369: 302
  • 61 Cheng Q, Chen J, Lin S, Ritter T. J. Am. Chem. Soc. 2020; 142: 17287
  • 62 Nakafuku KM, Zhang Z, Wappes EA, Stateman LM, Chen AD, Nagib DA. Nat. Chem. 2020; 12: 697
  • 63 Becker MR, Wearing ER, Schindler CS. Nat. Chem. 2020; 12: 898
  • 64 Hörmann FM, Kerzig C, Chung TS, Bauer A, Wenger OS, Bach T. Angew. Chem. Int. Ed. 2020; 59: 9659
  • 65 Tian L, Till NA, Kudisch B, MacMillan DW. C, Scholes GD. J. Am. Chem. Soc. 2020; 142: 4555
  • 66 Chatterjee A, König B. Angew. Chem. Int. Ed. 2019; 58: 14289
  • 67 Zheng J, Swords WB, Jung H, Skubi KL, Kidd JB, Meyer GJ, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2019; 141: 13625
  • 68 Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM. Nature 2019; 565: 343
  • 69 Jiang Y, Wang C, Rogers CR, Kodaimati MS, Weiss EA. Nat. Chem. 2019; 11: 1034
  • 70 Wang S, Zhang Y, Chen W, Wei J, Liu Y, Wang Y. Chem. Commun. 2015; 51: 11972
  • 71 Kretzschmar A, Patze C, Schwaebel ST, Bunz UH. J. Org. Chem. 2015; 80: 9126
  • 72 Brook AG, Pearce R, Pierce JB. Can. J. Chem. 1971; 49: 1622
  • 73 McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3
  • 74 Liu Q, You B, Xie G, Wang X. Org. Biomol. Chem. 2020; 18: 19
  • 75 Le Bras J, Muzart J. Tetrahedron 2020; 76: 130879
  • 76 Cai X, Liang W, Dai M. Tetrahedron 2019; 75: 193
  • 77 He X, Zhao Y, Zhang Z, Shen X. Org. Lett. 2022; 24: 1991
  • 78 Yang Z, Niu Y, He X, Chen S, Liu S, Li Z, Chen X, Zhang Y, Lan Y, Shen X. Nat. Commun. 2021; 12: 2131
  • 79 Zhu Z, Chen X, Liu S, Zhang J, Shen X. Eur. J. Org. Chem. 2021; 4927
  • 80 Zhang Y, Zhang Y, Shen X. Chem Catal. 2021; 1: 423 DOI: 10.1016/j.checat.2021.03.014.
  • 81 Chen X, Zhu Z, Liu S, Chen Y.-H, Shen X. Chin. Chem. Lett. 2022; 33: 2391
  • 82 Chen X, Gong X, Li Z, Zhou G, Zhu Z, Zhang W, Liu S, Shen X. Nat. Commun. 2020; 11: 2756
  • 83 Zhang Y, Zhang Y, Guo Y, Liu S, Shen X. Chem Catal. 2022; DOI: 10.1016/j.checat.2022.03.021.
  • 84 Deng Y, Liu Q, Smith AB. III. J. Am. Chem. Soc. 2017; 139: 9487
  • 85 Paredes MD, Alonso R. J. Org. Chem. 2000; 65: 2292