Synlett, Table of Contents Synlett 2022; 33(15): 1527-1531DOI: 10.1055/a-1860-3405 letter Amine Oxidation by Electrochemically Generated Peroxodicarbonate Authors Author Affiliations Ann-Katrin Seitz a Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany Tim van Lingen a Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany Marco Dyga a Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany Philipp J. Kohlpaintner b Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany Siegfried R. Waldvogel b Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany Lukas J. Gooßen∗ a Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract The N-oxidation of tertiary amines was achieved by using electrochemically generated peroxodicarbonate solutions as sustainable oxidizers. The presence of EDTA and 2,2,2-trifluoroacetophenone as a mediator was found to be crucial for converting water-insoluble substrates. Various tertiary amines were converted into their corresponding N-oxides in yields of up to 98%. The scope includes economically important surfactants and potential platform oxidizers. Key words Key wordsoxidation - peroxodicarbonate - boron-doped diamond - electrochemistry - amine oxides - organocatalysis Full Text References References and Notes 1a Holmberg K. In Ullmann’s Encyclopedia of Industrial Chemistry 2022; 1b Rice DP. Toxicol. Appl. Pharmacol. 1977; 39: 377 2 Sanderson H, Tibazarwa C, Greggs W, Versteeg DJ, Kasai Y, Stanton K, Sedlak RI. Risk Anal. 2009; 29: 857 3a VanRheenen V, Kelly RC, Cha DY. Tetrahedron Lett. 1976; 17: 1973 3b Ley SV, Norman J, Griffith WP, Marsden SP. Synthesis 1994; 1994: 639 3c Chen DX, Ho CM, Rudy Wu QY, Wu PR, Wong FM, Wu W. Tetrahedron Lett. 2008; 49: 4147 3d Moore PW, Read CD. G, Bernhardt PV, Williams CM. Chem. Eur. J. 2018; 24: 4556 3e Yates MH. Tetrahedron Lett. 1997; 38: 2813 3f Schmidt A.-KC, Stark CB. W. Org. Lett. 2011; 13: 4164 3g Tran LD, Roane J, Daugulis O. Angew. Chem. Int. Ed. 2013; 52: 6043 3h Katayev D, Pfister KF, Wendling T, Gooßen LJ. Chem. Eur. J. 2014; 20: 9902 3i Pichette Drapeau M, Bahri J, Lichte D, Gooßen LJ. Angew. Chem. Int. Ed. 2019; 58: 892 4a Mosher HS, Turner L, Carlsmith A. Org. Synth. 1953; 33: 79 4b Swern D. Chem. Rev. 1949; 45: 1 4c Cymerman CJ, Purushothaman KK. J. Org. Chem. 1970; 35: 1721 5 Ferrer M, Sánchez-Baeza F, Messeguer A. Tetrahedron 1997; 53: 15877 For examples of transition metal catalysts, see: 6a Rout L, Punniyamurthy T. Adv. Synth. Catal. 2005; 347: 1958 6b Copéret C, Adolfsson H, Khuong T.-AV, Yudin AK, Sharpless KB. J. Org. Chem. 1998; 63: 1740 6c Thellend A, Battioni P, Sanderson W, Mansuy D. Synthesis 1997; 1997: 1387 For examples of organocatalysts, see: 6d Payne GB, Deming PH, Williams PH. J. Org. Chem. 1961; 26: 659 6e Bergstad K, Bäckvall J.-E. J. Org. Chem. 1998; 63: 6650 6f Limnios D, Kokotos CG. Chem. Eur. J. 2014; 20: 559 6g Hartman T, Šturala J, Cibulka R. Adv. Synth. Catal. 2015; 357: 3573 For an example of a mediator, see: 6h Balagam B, Richardson DE. Inorg. Chem. 2008; 47: 1173 7a Barnes KK, Mann CK. J. Org. Chem. 1967; 32: 1474 7b Smith PJ, Mann CK. J. Org. Chem. 1969; 34: 1821 7c Masui M, Sayo H, Tsuda Y. J. Chem. Soc. B 1968; 973 7d Masui M, Sayo H. J. Chem. Soc. B 1971; 1593 7e Adenier A, Chehimi MM, Gallardo I, Pinson J, Vilà N. Langmuir 2004; 20: 8243 8a Okimoto M, Takahashi Y, Numata K, Nagata Y, Sasaki G. Synth. Commun. 2005; 35: 1989 8b Jones AM, Banks CE. Beilstein J. Org. Chem. 2014; 10: 3056 8c Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc. 1975; 97: 4264 9a Feldhues U, Schäfer HJ. Synthesis 1982; 1982: 145 9b Xue S, Watzele S, Čolić V, Brandl K, Garlyyev B, Bandarenka AS. ChemSusChem 2017; 10: 4812 For recent articles, see: 10a Izgorodin A, Izgorodina E, MacFarlane DR. Energy Environ. Sci. 2012; 5: 9496 10b Viswanathan V, Hansen HA, Nørskov JK. J. Phys. Chem. Lett. 2015; 6: 4224 10c Kuttassery F, Mathew S, Sagawa S, Remello SN, Thomas A, Yamamoto D, Onuki S, Nabetani Y, Tachibana H, Inoue H. ChemSusChem 2017; 10: 1909 10d Shi X, Siahrostami S, Li G.-L, Zhang Y, Chakthranont P, Studt F, Jaramillo TF, Zheng X, Nørskov JK. Nat. Commun. 2017; 8: 701 For selected reviews, see: 10e Jiang Y, Ni P, Chen C, Lu Y, Yang P, Kong B, Fisher A, Wang X. Adv. Energy Mater. 2018; 8: 1801909 10f Shi X, Back S, Gill TM, Siahrostami S, Zheng X. Chem 2021; 7: 38 10g Mavrikis S, Perry SC, Leung PK, Wang L, Ponce de León C. ACS Sustainable Chem. Eng. 2021; 9: 76 11a Jones CW. RSC Clean Technology Monographs: Applications of Hydrogen Peroxide and Derivatives. Royal Society of Chemistry; Cambridge: 1999. 11b Wendt H, Kreysa G. Electrochemical Engineering Science and Technology in Chemical and Other Industries. Springer; Berlin: 1999 12a von Hansen A, Constam EJ. Z. Elektrochem. 1896; 3: 137 12b von Hansen A. Z. Elektrochem. 1897; 445 13 Tanatar S. Ber. Dtsch. Chem. Ges. 1899; 32: 1544 14 Dinnebier RE, Vensky S, Stephens PW, Jansen M. Angew. Chem. Int. Ed. 2002; 41: 1922 For reviews on the use of BDD electrodes in electroorganic synthesis, see: 15a Lips S, Waldvogel SR. ChemElectroChem 2019; 6: 1649 15b Waldvogel SR, Mentizi S, Kirste A. In Radicals in Synthesis III . Heinrich M, Gansäuer A. Springer; Berlin: 2012 For their application in the synthesis of peroxodicarbonate, see: 15c Saha MS, Furuta T, Nishiki Y. Electrochem. Solid-State Lett. 2003; 6: D5 15d Saha MS, Furuta T, Nishiki Y. Electrochem. Commun. 2004; 6: 201 15e Chardon CP, Matthée T, Neuber R, Fryda M, Comninellis C. ChemistrySelect 2017; 2: 1037 16 Page PC. B, Marken F, Williamson C, Chan Y, Buckley BR, Bethell D. Adv. Synth. Catal. 2008; 350: 1149 17 Waldvogel S, Zirbes M, Neuber R, Matthée T. DE 102018128228, 2020 18 Gütz C, Stenglein A, Waldvogel SR. Org. Process Res. Dev. 2017; 21: 771 19 Electrosynthesis of Peroxodicarbonate An aqueous electrolyte solution (44 mL) containing K2CO3 (1.136 M), Na2CO3 (0.952 M), and KHCO3 (0.107 M) was added to a 100 mL Schott glass bottle, which was then placed in a cryostat bath (–5 °C). A temperature sensor was placed inside the electrolyte. The solution was circulated through the electrolysis system for 15 min at 50 mL/min until its temperature became constant. The target temperature of the cryostat was then set to –15 °C and the solution was electrolyzed under a circular flow (50 mL/min) using a cooled stainless-steel cathode and a BDD anode (10.8 cm² electrode surface area) at a constant current of 3.84 A (356 mA/cm²) for 1 h (1.5 F relative to CO3 2–). After the electrolysis, the concentration of peroxodicarbonate was determined by iodometric titration of a 4.0 mL aliquot against 0.1 M Na2S2O3. 20a Limnios D, Kokotos CG. J. Org. Chem. 2014; 79: 4270 20b Wang Z.-X, Tu Y, Frohn M, Zhang J.-R, Shi Y. J. Am. Chem. Soc. 1997; 119: 11224 21 Shu L, Shi Y. J. Org. Chem. 2000; 65: 8807 22 Mallat T, Bodmer M, Baiker A. Catal. Lett. 1997; 44: 95 23 N-Methylmorpholine N-Oxide (2a); Typical Procedure The titrated peroxodicarbonate solution (3.4 equiv) was added to N-methylmorpholine (101 mg, 1.00 mmol) and EDTA (73.1 mg, 0.25 mmol, 0.25 equiv) in a 50 mL vial containing a Teflon-coated stirring bar. The mixture was then stirred at RT for 5 h and extracted with EtOAc (20 mL). The aqueous phase was dried by lyophilization and the resulting solid was crushed, suspended in EtOAc, and filtered. The filter cake was washed with EtOAc (4 × 20 mL) and the organic solvent was removed under reduced pressure to give a white solid; yield: 113 mg (0.97 mmol, 97%). 1H NMR (300 MHz, CDCl3): δ = 4.50–4.39 (m, 2 H), 3.81–3.72 (m, 2 H), 3.36 (td, J = 11.4, 3.7 Hz, 2 H), 3.26 (s, 3 H), 3.15–3.06 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 66.0, 61.7, 61.2. HRMS (ESI): m/z [M + H]+ calcd for C5H12NO2: 118.0863; found: 118.0863. The analytical data (NMR) matched those reported in the literature.25a 24 N,N-Dimethyldodecylamine N-Oxide (2b); Typical Procedure for Lipophilic Amines The titrated peroxodicarbonate solution (3.4 equiv) was added to N,N-dimethyldodecylamine (1.00 mmol), EDTA (73.1 mg, 0.25 mmol, 0.25 equiv), and TFAP (35.5 μL, 0.25 mmol, 0.25 equiv) in a 50 mL vial containing a Teflon-coated stirring bar. The mixture was stirred at RT for 5 h and then extracted with EtOAc (5 × 20 mL). The organic solvent was removed under reduced pressure to give a white solid; yield: 226 mg (0.97 mmol, 97%); mp: 130–133 °C (Et2O). 1H NMR (300 MHz, CDCl3): δ = 3.28–3.20 (m, 2 H), 3.18 (s, 6 H), 1.95–1.81 (m, 2 H), 1.41–1.19 (m, 18 H), 0.87 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 72.1, 58.9, 32.0, 29.7 (2 C), 29.6, 29.5, 29.4 (2 C), 26.8, 24.1, 22.8, 14.2. HRMS (ESI): m/z [M + H]+ calcd for C14H32NO: 230.2484; found: 230.2487. The analytical data (NMR) matched those reported in the literature.25b 25a Imada Y, Iida H, Ono S, Murahashi S.-I. J. Am. Chem. Soc. 2003; 125: 2868 25b Rauchdi M, Ait Ali M, Roucoux A, Denicourt-Nowicki A. Appl. Catal., A 2018; 550: 266 Supplementary Material Supplementary Material Supporting Information (PDF) (opens in new window)