Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(15): 1546-1550
DOI: 10.1055/a-1863-8862
DOI: 10.1055/a-1863-8862
letter
2-Iodoxybenzoic Acid–Dimethyl Sulfoxide (IBX-DMSO)-Promoted Oxidative Aromatization of Spiro[2.5]octa-4,7-dien-6-one
This research was supported by the Key Scientific Research Project in Universities of Henan Province (19A150049).
![](https://www.thieme-connect.de/media/synlett/202215/lookinside/thumbnails/st-2022-l0092-l_10-1055_a-1863-8862-1.jpg)
Abstract
A 2-iodoxybenzoic acid (IBX)–dimethyl sulfoxide (IBX-DMSO)-promoted oxidative aromatization of spiro[2.5]octa-4,7-dien-6-ones has been developed. A series of substrates with various substitutions were transformed into oxidative aromatization products in good to excellent yields. This oxidative aromatization features environmentally friendly reagents, high efficiency, a broad substrate scope, broad functional-group tolerance, and mild reaction conditions.
Key words
metal-free reaction - iodoxybenzoic acid - dimethyl sulfoxide - oxidation - aromatization - spirooctadienonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1863-8862.
- Supporting Information
Publication History
Received: 21 February 2022
Accepted after revision: 30 May 2022
Accepted Manuscript online:
30 May 2022
Article published online:
15 June 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Allais C, Grassot J.-M, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
- 1b Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
- 1c Bowman WR, Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
- 1d Latrache M, Hoffmann N. Chem. Soc. Rev. 2021; 50: 7418
- 1e Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 1f Odom AL, McDaniel TJ. Acc. Chem. Res. 2015; 48: 2822
- 1g Trofimov BA, Schmidt EY. Acc. Chem. Res. 2018; 51: 1117
- 1h Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
- 1i Xu P, Li W, Xie J, Zhu C. Acc. Chem. Res. 2018; 51: 484
- 1j Zhang J, Jiang Q, Yang D, Zhao X, Dong Y, Liu R. Chem. Sci. 2015; 6: 4674
- 1k Jiang Y.-T, Yu Z.-Z, Zhang Y.-K, Wang B. Org. Lett. 2018; 20: 3728
- 1l Dai X, Cheng D, Guan B, Mao W, Xu X, Li X. J. Org. Chem. 2014; 79: 7212
- 1m Itoh T, Nagata A, Okada M, Ohsawa A. Tetrahedron Lett. 1995; 36: 2269
- 1n He K.-H, Tan F.-F, Zhou C.-Z, Zhou G.-J, Yang X.-L, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
- 1o Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
- 2a Steves JE, Stahl SS. J. Am. Chem. Soc. 2013; 135: 15742
- 2b Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
- 2c Gamez P, Arends IW. C. E, Reedijk J, Sheldon RA. Chem. Commun. 2003; 2414
- 2d Jiang X, Zhai Y, Chen J, Han Y, Yang Z, Ma S. Chin. J. Chem. 2018; 36: 15
- 2e Könning D, Hiller W, Christmann M. Org. Lett. 2012; 14: 5258
- 2f Zhang W, Loebach JL, Wilson SR, Jacobsen EN. J. Am. Chem. Soc. 1990; 112: 2801
- 2g de Visser SP, Sason S. J. Am. Chem. Soc. 2003; 125: 7413
- 2h Liu X, Wang F. Coord. Chem. Rev. 2010; 256: 1115
- 2i Talsi EP, Bryliakov KP. Coord. Chem. Rev. 2012; 256: 1418
- 2j Al-Rashid ZF, Johnson WL, Hsung RP, Wei Y, Yao P.-Y, Liu R, Zhao K. J. Org. Chem. 2008; 73: 8780
- 2k Wang C, Yamamoto H. J. Am. Chem. Soc. 2014; 136: 1222
- 2l Scarso A, Strukul G. Adv. Synth. Catal. 2005; 347: 1227
- 3a Chen Z.-H, Tu Y.-Q, Zhang S.-Y, Zhang F.-M. Org. Lett. 2011; 13: 724
- 3b Guo S, Liu J, Ma D. Angew. Chem. Int. Ed. 2015; 54: 1298
- 3c Shi H, Tan C, Zhang W, Zhang Z, Long R, Gong J, Luo T, Yang Z. J. Org. Chem. 2016; 81: 751
- 3d Kong X, Wang Y, Chen Y, Lin L, Cao Z.-Y. Org. Chem. Front. 2022; 9: 1288
- 3e Iwata M, Kamijoh Y, Yamamoto E, Yamanaka M, Nagasawa K. Org. Lett. 2017; 19: 420
- 3f Tian G, Fedoseev P, Van der Eycken EV. Chem. Eur. J. 2017; 23: 5224
- 4a Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 4b Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 4c Parra A. Chem. Rev. 2019; 119: 12033
- 4d Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
- 4e Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
- 4f Chai J, Ding W, Wang C, Ito S, Wu J, Yoshikai N. Chem. Sci. 2021; 12: 15128
- 4g Ding W, Chai J, Wang C, Wu J, Yoshikai N. J. Am. Chem. Soc. 2020; 142: 8619
- 4h Chai J, Ding W, Wu J, Yoshikai N. Chem. Asian J. 2020; 15: 2166
- 4i Wu J, Deng X, Yoshikai N. Chem. Eur. J. 2019; 25: 7839
- 4j Dohi T, Maruyama A, Takenaga N, Senami K, Minamistsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
- 4k Yu J, Cui J, Hou X.-S, Liu S.-S, Gao W.-C, Jiang S, Tian J, Zhang C. Tetrahedron: Asymmetry 2011; 22: 2039
- 4l Ouyang Q, Yan K.-Q, Zhu Y.-Z, Zhang C.-H, Liu J.-Z, Chen C, Zheng J.-Y. Org. Lett. 2012; 14: 2746
- 4m Zhdankin VV. J. Org. Chem. 2011; 76: 1185
- 4n Quideaux S, Wirth T. Tetrahedron 2010; 66: 5737
- 4o Altermann SM, Schäfer S, Wirth T. Tetrahedron 2010; 66: 5902
- 4p Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
- 4q Corrieri M, De Crescentini L, Mantellini F, Mari G, Santeusanio S, Favi G. J. Org. Chem. 2021; 86: 17918
- 4r Atmaca U, Usanmaz HK, Çelik M. Tetrahedron Lett. 2014; 55: 2230
- 4s Mu R, Liu Z, Yang Z, Liu Z, Wu L, Liu Z.-L. Adv. Synth. Catal. 2005; 347: 1333
- 4t Shen H.-J, Duan Y.-N, Zheng K, Zhang C. J. Org. Chem. 2019; 84: 14381
- 4u Shen H.-J, Hu Z.-N, Zhang C. J. Org. Chem. 2022; 87: 3885
- 4v Jiang S, Yan T.-S, Han Y.-C, Cui L.-Q, Xue X.-S, Zhang C. J. Org. Chem. 2017; 82: 11691
- 4w Duan Y.-N, Zhang Z, Zhang C. Org. Lett. 2016; 18: 6176
- 5a Hartmann C, Meyer V. Ber. Dtsch. Chem. Ges. 1893; 26: 1727
- 5b Frigerio M, Santagostino M, Sputore S. J. Org. Chem. 1999; 64: 4537
- 5c Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 5d Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659
- 5e Mazitschek R, Mülbaier MM, Giannis A. Angew. Chem. Int. Ed. 2002; 41: 4059
- 5f Thottumkara AP, Bowsher MS, Vinod TK. Org. Lett. 2005; 7: 2933
- 6a Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
- 6b Meyer SD, Schreiber SL. J. Org. Chem. 1994; 59: 7549
- 6c Yadav JS, Reddy BV. S, Basak AK, Venkat Narsaiah A. Tetrahedron 2004; 60: 2131
- 6d Donohoe TJ, Basutto JA, Bower JF, Rathi A. Org. Lett. 2011; 13: 1036
- 7 Frigerio M, Santagostino M, Sputore S. J. Org. Chem. 1999; 64: 4537
- 8 Achar TK, Maiti S, Mal P. RSC Adv. 2014; 4: 12834
- 9a Wu X.-F, Natte K. Adv. Synth. Catal. 2016; 358: 336
- 9b Zierkiewicz W, Privalov T. Organometallics 2005; 24: 6019
- 9c Yiannios CN, Karabinos JV. J. Org. Chem. 1963; 28: 3246
- 10a Liang Y.-F, Li X, Wang X, Zou M, Tang C, Liang Y, Song S, Jiao N. J. Am. Chem. Soc. 2016; 138: 12271
- 10b Liang Y.-F, Song S, Ai L, Li X, Jiao N. Green Chem. 2016; 18: 6462
- 10c Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J. Org. Chem. 2014; 79: 4125
- 10d Addada RR, Regalla VR, Vajja MR, Vema VN, Anna VR. Tetrahedron Lett. 2016; 57: 2838
- 10e Mupparapu N, Khan S, Battula S, Kushwaha M, Gupta AP, Ahmed QN, Vishwakarma RA. Org. Lett. 2014; 16: 1152
- 11a Soroko I, Bhole Y, Livingston AG. Green Chem. 2011; 13: 162
- 11b Doble M, Kruthiventi AK. Green Chemistry and Engineering . Elsevier; Amsterdam: 2007
- 11c Nelson WM. Green Solvents for Chemistry: Perspectives and Practice in Green Chemistry. Oxford University Press; New York: 2003
- 12 Dialkyl Aroyl(3,5-dialkyl-4-hydroxyphenyl)malonates 2a–t; General Procedure A 10 mL Schlenk tube equipped with a magnetic stirrer bar was charged with spiro compound 1 (0.1 mmol), IBX (10 mol%), and anhyd DMSO (0.5 mL) under air. The tube was sealed with a plastic screw-cap with a Teflon insert, and the mixture was heated to 100 °C. After 12 h, the mixture was cooled to rt and poured into H2O (20 mL). The resulting mixture was extracted with EtOAc (3 × 20 mL), and the combined organic layer was washed with brine (3 × 20 mL), dried (MgSO4), and concentrated. The crude product was then purified by chromatography (silica gel). Diethyl Benzoyl(3,5-di-tert-butyl-4-hydroxyphenyl)malonate (2a) Yellow solid; yield: 45.8 mg (98%); mp 140.1–140.9 °C. IR (neat): 3603, 2961, 1746, 1727, 1679, 1595, 1462, 1435, 1192, 1044, 709 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.65 (t, J = 7.3 Hz, 2 H), 7.42 (t, J = 7.4 Hz, 1 H), 7.28 (d, J = 8.1 Hz, 2 H), 7.26 (s, 1 H), 5.23 (s, 1 H), 4.29–4.23 (m, 4 H), 1.34 (s, 18 H), 1.18 (t, J = 7.1 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 192.1, 167.6, 153.6, 136.0, 135.4, 132.4, 129.5, 128.0, 126.2, 124.3, 74.1, 62.2, 34.4, 30.2, 13.8. HRMS (ESI/Q-TOF): m/z [M + H]+ calcd for C28H37O6: 469.2585; found: 469.2588. Diethyl Benzoyl(4-hydroxy-3,5-dimethylphenyl)malonate (2s) Yellow solid; yield: 36.1 mg (94%); mp 110.0–110.9 °C; IR (neat): 3525, 2939, 1746, 1732, 1669, 1595, 1446, 1185, 1064, 694 cm–1. 1H NMR (400 MHz, CDCl3,): δ = 7.69 (d, J = 7.4 Hz, 2 H), 7.42 (t, J = 7.4 Hz, 1 H), 7.28 (t, J = 7.9 Hz, 2 H), 7.15 (s, 2 H), 4.27–4.22 (m, 4 H), 2.16 (s, 6 H), 1.51 (t, J = 7.1 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 191.8, 167.5, 152.4, 135.7, 132.6, 129.7, 129.1, 128.1, 124.9, 123.2, 73.5, 62.3, 16.2, 13.7. HRMS (ESI/Q-TOF): m/z [M + H]+ calcd for C22H25O6: 385.1646; found: 385.1647.
For reviews on hypervalent iodine chemistry, see :
For selected uses of hypervalent iodine reagents, see: