Subscribe to RSS
DOI: 10.1055/a-1890-8503
Advances in the Iron-Catalyzed Direct Functionalizations of Heterocycles
This work was financially supported by the Science and Engineering Research Board (SERB), New Delhi, India (CRG/2020/000554). C.P. thanks UGC, New Delhi for a research fellowship.
Abstract
Direct functionalization of heterocycles is an advanced strategy for diversifying privileged and biorelevant heterocycle-containing molecules. Particularly, use of the most abundant transition metal, iron, as a catalyst makes this process highly cost-effective and sustainable. Recently, some progress has been realized towards the direct functionalization of heterocycles under iron catalysis. Herein, we present the developments in the C–H bond functionalizations and related reactions of various heterocycles by abundant iron salts. This Synpacts is categorized into different sections based on heterocycles being functionalized, and each section is discussed based on the type of reaction catalyzed by iron.
1 Introduction
2 Functionalization of Indoles
2.1 Alkylation
2.2 Alkenylation
2.3 Other Reactions
3 Oxindoles and Isatins
3.1 C–C Bond Formation
3.2 C–Heteroatom Bond Formation
4 Pyridines and Furans
5 Functionalization of Azoles
6 Summary and Outlook
Publication History
Received: 02 June 2022
Accepted after revision: 03 July 2022
Accepted Manuscript online:
03 July 2022
Article published online:
28 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 1b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 1c Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 1d Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnϋrch M. Chem. Soc. Rev. 2018; 47: 6603
- 1e Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
- 2a Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
- 2b Walker SR, Carter EJ, Huff BC, Morris JC. Chem. Rev. 2009; 109: 3080
- 2c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 3a Hirano K, Miura M. Synlett 2011; 294
- 3b Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
- 3c Leitch JA, Bhonoah Y, Frost CG. ACS Catal. 2017; 7: 5618
- 3d Chen S, Ranjan P, Voskressensky LG, Van der Eycken EV, Sharma UK. Molecules 2020; 25: 4970
- 3e Jagtap RA, Punji B. Chem. Rec. 2021; 21: 3573
- 4a Lewis JC, Bergman RG, Ellman JA. Acc. Chem. Res. 2008; 41: 1013
- 4b Beck EM, Gaunt MJ. Top. Curr. Chem. 2010; 292: 85
- 4c Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215
- 4d Li B, Dixneuf PH. Top. Organomet. Chem. 2014; 48: 119
- 4e Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
- 5a Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
- 5b Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 5c Jagtap RA, Punji B. Asian J. Org. Chem. 2020; 9: 326
- 5d Khake SM, Chatani N. Chem 2020; 6: 1056
- 5e Bansal S, Shabade AB, Punji B. Adv. Synth. Catal. 2021; 363: 1998
- 5f Bera A, Kabadwal LM, Bera S, Banerjee D. Chem. Commun. 2022; 58: 10
- 6a Cera G, Ackermann L. Top. Curr. Chem. 2016; 374: 57
- 6b Hu R.-M, Lai Y.-H, Xu D.-Z. Synlett 2020; 31: 1753
- 7a Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
- 7b Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 7c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 8 Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 9a Chen F.-E, Huang J. Chem. Rev. 2005; 105: 4671
- 9b Zhou G, Wu D, Snyder B, Ptak RG, Kaur H, Gochin M. J. Med. Chem. 2011; 54: 7220
- 9c Melander RJ, Minvielle MJ, Melander C. Tetrahedron 2014; 70: 6363
- 10 Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 11 Ankade SB, Shabade AB, Soni V, Punji B. ACS Catal. 2021; 11: 3268
- 12 Itoh T, Uehara H, Ogiso K, Nomura S, Hayase S, Kawatsura M. Chem. Lett. 2007; 36: 50
- 13 Kobayashi J.-k, Matsui S.-i, Ogiso K, Hayase S, Kawatsura M, Itoh T. Tetrahedron 2010; 66: 3917
- 14 Niu T, Huang L, Wu T, Zhang Y. Org. Biomol. Chem. 2011; 9: 273
- 15 Cai Y, Zhu S.-F, Wang G.-P, Zhou Q.-L. Adv. Synth. Catal. 2011; 353: 2939
- 16 Li K, Tan G, Huang J, Song F, You J. Angew. Chem. Int. Ed. 2013; 52: 12942
- 17 Zhang Y, Ni M, Feng B. Org. Biomol. Chem. 2016; 14: 1550
- 18 Seck C, Mbaye MD, Gaillard S, Renaud J.-L. Adv. Synth. Catal. 2018; 360: 4640
- 19 Shang R, Ilies L, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 14349
- 20a Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
- 20b Monks BM, Fruchey ER, Cook SP. Angew. Chem. Int. Ed. 2014; 53: 11065
- 20c Fruchey ER, Monks BM, Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
- 20d Ilies L, Ichikawa S, Asako S, Matsubara T, Nakamura E. Adv. Synth. Catal. 2015; 357: 2175
- 21a Asako S, Ilies L, Nakamura E. J. Am. Chem. Soc. 2013; 135: 17755
- 21b Matsubara T, Asako S, Ilies L, Nakamura E. J. Am. Chem. Soc. 2014; 136: 646
- 22 Wong MY, Yamakawa T, Yoshikai N. Org. Lett. 2015; 17: 442
- 23 Loup J, Zell D, Oliveira JC. A, Keil H, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 14197
- 24 Jagtap RA, Samal PP, Vinod CP, Krishnamurty S, Punji B. ACS Catal. 2020; 10: 7312
- 25a García-Rubia A, Arrayás RG, Carretero JC. Angew. Chem. Int. Ed. 2009; 48: 6511
- 25b Lanke V, Prabhu KR. Org. Lett. 2013; 15: 2818
- 25c Li B, Ma J, Xie W, Song H, Xu S, Wang B. J. Org. Chem. 2013; 78: 9345
- 25d Liang L, Fu S, Lin D, Zhang X.-Q, Deng Y, Jiang H, Zeng W. J. Org. Chem. 2014; 79: 9472
- 25e Kona CN, Nishii Y, Miura M. Org. Lett. 2018; 20: 4898
- 26a Nakao Y, Kanyiva KS, Oda S, Hiyama T. J. Am. Chem. Soc. 2006; 128: 8146
- 26b Jagtap RA, Vinod CP, Punji B. ACS Catal. 2019; 9: 431
- 27 Yang Q, Wang L, Guo T, Yu Z. J. Org. Chem. 2012; 77: 8355
- 28 Huo C, Dong J, Su Y, Tang J, Chen F. Chem. Commun. 2016; 52: 13341
- 29 Hock KJ, Knorrscheidt A, Hommelsheim R, Ho J, Weissenborn MJ, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 3630
- 30 Zhang L, Yi F, Zou J, Qu S. Asian J. Chem. 2013; 25: 6117
- 31 Zhang G, Lv G, Pan C, Cheng J, Chen F. Synlett 2011; 2991
- 32 Luz EQ, Seckler D, Araújo JS, Angst L, Lima DB, Maluf Rios EA, Ribeiro RR, Rampon DS. Tetrahedron 2019; 75: 1258
- 33 Wu H.-R, Huang H.-Y, Ren C.-L, Liu L, Wang D, Li C.-J. Chem. Eur. J. 2015; 21: 16744
- 34 Wu K.-X, Xu Y.-Z, Cheng L, Wu R.-S, Liu P.-Z, Xu D.-Z. Green Chem. 2021; 23: 8448
- 35 Hu R.-M, Han D.-Y, Li N, Huang J, Feng Y, Xu D.-Z. Angew. Chem. Int. Ed. 2020; 59: 3876
- 36 Tan Z.-Y, Wu K.-X, Huang L.-S, Wu R.-S, Du Z.-Y, Xu D.-Z. Green Chem. 2020; 22: 332
- 37a Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
- 37b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 38 Pi D, Jiang K, Zhou H, Sui Y, Uozumi Y, Zou K. RSC Adv. 2014; 4: 57875
- 39 Jagtap RA, Pradhan C, Gonnade RG, Punji B. Chem. Asian J. 2022; e202200414; DOI
- 40 Lai Y.-H, Wu R.-S, Huang J, Huang J.-Y, Xu D.-Z. Org. Lett. 2020; 22: 3825
- 41 Huang L.-S, Han D.-Y, Xu D.-Z. Adv. Synth. Catal. 2019; 361: 4016
- 42 Tran LD, Daugulis O. Org. Lett. 2010; 12: 4277
- 43 Ferlin F, Zangarelli A, Lilli S, Santoro S, Vaccaro L. Green Chem. 2021; 23: 490
- 44a Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
- 44b Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Angew. Chem. Int. Ed. 2009; 48: 2925
- 45 Sirois JJ, Davis R, DeBoef B. Org. Lett. 2014; 16: 868
- 46 Modak A, Rana S, Maiti D. J. Org. Chem. 2015; 80: 296
- 47 Yamane Y, Yoshinaga K, Sumimoto M, Nishikata T. ACS Catal. 2019; 9: 1757
- 48 Vodnala N, Gujjarappa R, Kabi AK, Kumar M, Beifuss U, Malakar CC. Synlett 2018; 29: 1469
- 49 Correa A, Fiser B, Gómez-Bengoa E. Chem. Commun. 2015; 51: 13365
- 50 Babu KR, Zhu N, Bao H. Org. Lett. 2017; 19: 46
- 51 Wang X, Lei B, Ma L, Jiao H, Xing W, Chen J, Li Z. Adv. Synth. Catal. 2017; 359: 4284