Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(20): 1953-1960
DOI: 10.1055/a-1890-9162
DOI: 10.1055/a-1890-9162
synpacts
Electrosynthesis: A Practical Way to Access Highly Reactive Intermediates
We are grateful to the Engineering and Physical Sciences Research Council (Grant EP/S017097/1), the Leverhulme Trust (Grant RPG-2021-146), and the University of Greenwich (Vice Chancellor’s PhD Scholarship) for financially supporting these projects.
Abstract
Electrosynthesis is undergoing a renaissance, but it is still far from being considered a standard method within the chemists’ synthetic toolbox. In this article, we will demystify organic electrochemistry by reviewing some practical methodologies developed in our laboratory to prepare highly reactive synthetic intermediates.
1 Introduction
2 Acyloxy Radicals
3 Orthoesters
4 Isocyanates
5 Isocyanides
6 Diazo Compounds
7 Conclusion
Key words
electrosynthesis - lactones - orthoesters - isocyanates - isocyanides - diazo compounds - radicals - cationsPublication History
Received: 23 June 2022
Accepted: 04 July 2022
Accepted Manuscript online:
04 July 2022
Article published online:
28 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Kolbe H. Justus Liebigs Ann. Chem. 1849; 69: 257
- 2 Faraday M. Philos. Trans. R. Soc. London 1832; 122: 125
-
3
Yan M,
Kawamata Y,
Baran PS.
Chem. Rev. 2017; 117: 13230
- 4 Leech MC, Lam K. Nat. Rev. Chem. 2022; 1
- 5 Petti A, Leech MC, Garcia AD, Goodall IC. A, Dobbs AP, Lam K. Angew. Chem. Int. Ed. 2019; 58: 16115
- 6 Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
- 7 Garcia AD, Leech MC, Petti A, Denis C, Goodall IC. A, Dobbs AP, Lam K. Org. Lett. 2020; 22
- 8 Williamson AW, Kay G. Justus Liebigs Ann. Chem. 1854; 92: 346
- 9 Pinner A. Ber. Dtsch. Chem. Ges. 1883; 16: 1643
- 10 Kantlehner W, Maier T, Kapassakalidis JJ. Synthesis 1981; 380
- 11 Petti A, Fagnan C, van Melis CG. W, Tanbouza N, Garcia AD, Mastrodonato A, Leech MC, Goodall IC. A, Dobbs AP, Ollevier T, Lam K. (2021). Supporting-Electrolyte-Free Anodic Oxidation of Oxamic Acids into Isocyanates: An Expedient Way to Access Ureas, Carbamates, and Thiocarbamates. Org. Process Res. Dev. 2021; 25: 2614-2621
- 12 Arnold RG, Nelson JA, Verbanc JJ. Chem. Rev. 1957; 57: 47
- 13 Leech MC, Petti A, Tanbouza N, Mastrodonato A, Goodall IC. A, Ollevier T, Dobbs AP, Lam K. Org. Lett. 2021; 23: 9371
- 14 Edenborough MS, Herbert RB. Nat. Prod. Rep. 1988; 5: 229
- 15 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 16 Bode ML, Gravestock D, Rousseau AL. Org. Prep. Proced. Int. 2016; 48: 89
- 17 Tanbouza N, Petti A, Leech MC, Caron L, Walsh JM, Lam K, Ollevier T. Org. Lett. 2022; 24: 4665
- 18 Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 19 Hock KJ, Koenigs RM. Chem. Eur. J. 2018; 24: 10571