Subscribe to RSS
DOI: 10.1055/a-1988-1916
l-Proline-Catalyzed Three-Component Reaction of 4-Chloro-3-formylcoumarin, Sodium Sulfide, and α-Halo Ketones: A Direct Approach to Thieno[3,2-c]coumarins
This work was supported by a Qatar University Student Grant [QUST-2-CAS-2020-8] and the Medical Research Center (MRC)/Academic Health System (AHS) (Grant No. MRC-01-22-414).
Dedicated to Professor Hala S. Al-Easa of Qatar university on the occasion of her retirement.
Abstract
A new protocol for the synthesis of thieno[3,2-c]coumarins is disclosed. In this method, a 3-formyl-2-oxo-2H-chromene-4-thiolate anion is generated in situ by treatment of 4-chloro-3-formylcoumarin with sodium sulfide. This chromene-4-thiolate undergoes an l-proline-catalyzed substitution/Knoevenagel cascade with various α-halo ketones to afford the desired thienocoumarins in moderate to good isolated yields. This protocol eliminates the need for stoichiometric amounts of inorganic bases and the use of foul-smelling thiols. The reaction conditions tolerate a variety of α-halo ketones.
Key words
organocatalysis - multicomponent reaction - thienocoumarins - thiophene - proline catalysis - cascade reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1988-1916.
- Supporting Information
Publication History
Received: 13 October 2022
Accepted after revision: 27 November 2022
Accepted Manuscript online:
27 November 2022
Article published online:
10 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Stefanachi A, Leonetti F, Pisani L, Catto M, Carrotti A. Molecules 2018; 23: 250
- 2 Hussain MI, Syed QA, Khattak MN. K, Hafez B, Reigosa MJ, El-Keblawy A. Biologia (Cham, Switz.) 2019; 74: 863
- 3 Khursheed A, Jain V. Nat. Prod. J. 2021; 11: 648
- 4 Gulati S, Singh R, Sangwan S. RSC Adv. 2021; 11: 29130
- 5 Adimule VM, Nandi SS, Kerur SS, Khadapure SA, Chinnam S. Top. Catal. 2022;
- 6 Bouhaoui A, Eddahmi M, Dib M, Khouili M, Aires A, Catto M, Bouissane L. ChemistrySelect 2021; 6: 5848
- 7 Molnar M, Lončarić M, Kovač M. Curr. Org. Chem. 2020; 24: 4
- 8 Moreira NM, Martelli LS. R, Corrêa AG. Beilstein J. Org. Chem. 2021; 17: 1952
- 9 Shkoor M, Bayari R. Synlett 2021; 32: 795
- 10 Alizadeh A, Farajpour B, Khanpour M. Synlett 2021; 32: 697
- 11 Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Cancers 2020; 12: 1959
- 12 Pan Y, Liu T, Wang X, Sun J. J. Enzyme Inhib. Med. Chem. 2022; 37: 616
- 13 Li Z, Kong D, Liu Y, Li M. Genes Dis. 2022; 9: 80
- 14 Thakur A, Singla R, Jaitak V. Eur. J. Med. Chem. 2015; 101: 476
- 15 Feng D, Zhang A, Yang Y, Yang P. Arch. Pharm. (Weinheim, Ger.) 2020; 353: 1900380
- 16 Li H, Yao Y, Li L. J. Pharm. Pharmacol. 2017; 69: 1253
- 17 Prusty JS, Kumar A. Mol. Diversity 2020; 24: 1367
- 18 Bai R.-R, Wu X.-M, Xu J.-Y. Chin. J. Nat. Med. 2015; 13: 721
- 19 Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
- 20 Sun X.-y, Liu T, Sun J, Wang X.-j. RSC Adv. 2020; 10: 10826
- 21 Wang Y.-H, Avula B, Nanayakkara NP. D, Zhao J, Khan IA. J. Agric. Food Chem. 2013; 61: 4470
- 22 Stiefel C, Schubert T, Morlock GE. ACS Omega 2017; 2: 5242
- 23 Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, Teissier García AG, Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
- 24 Advances in Structure and Activity Relationship of Coumarin Derivatives. Penta S. Elsevier; Amsterdam: 2016
- 25 Salehian F, Nadri H, Jalili-Baleh L, Youseftabar-Miri L, Abbas Bukhari SN, Foroumadi A, Tüylü Küçükkilinç T, Sharifzadeh M, Khoobi M. Eur. J. Med. Chem. 2021; 212: 113034
- 26 Archna SP, Chawla PA. Bioorg. Chem. 2020; 101: 104026
- 27 Roman G. Arch. Pharm. (Weinheim, Ger.) 2022; 355: 2100462
- 28 Liu S, Deng G.-J, Huang H. Synlett 2021; 32: 142
- 29 Singh A, Singh G, Bedi PM. S. J. Heterocycl. Chem. 2020; 57: 2658
- 30 Al-Zoubi RM, Al-Zoubi MS, Jaradat KT, McDonald R. Eur. J. Org. Chem. 2017; 5800
- 31 Al-Zoubi RM, Ibdah A, Al-Jammal WK, Al-Zoubi MS, Almasalma AA, McDonald R. Synthesis 2018; 50: 384
- 32 Di Maria F, Zangoli M, Barbarella G. Org. Mater. 2021; 03: 321
- 33 Fernandes RS, Shetty NS, Mahesha P, Gaonkar SL. J. Fluoresc. 2022; 32: 19
- 34 Al-Zoubi RM, Al-Jammal WK, El-Khateeb MY, McDonald R. Eur. J. Org. Chem. 2015; 3374
- 35 Al-Zoubi RM, Al-Mughaid H, Al-Zoubi MA, Jaradat KT, McDonald R. Eur. J. Org. Chem. 2015; 5501
- 36 Rani B, Agarwala A, Behera D, Verma VP, Singh AP, Shrivastava R. Dyes Pigm. 2021; 194: 109596
- 37 Hasan AH, Murugesan S, Amran SI, Chander S, Alanazi MM, Hadda TB, Shakya S, Pratama MR. F, Das B, Biswas S, Jamalis J. Bioorg. Chem. 2022; 119: 105572
- 38 Cai G, Yu W, Song D, Zhang W, Guo J, Zhu J, Ren Y, Kong L. Eur. J. Med. Chem. 2019; 174: 236
- 39 El-Sawy ER, Abdelwahab AB, Kirsch G. Molecules 2021; 26: 3409
- 40 Adib M, Rajai-Daryasarei S, Pashazadeh R, Jahani M, Yazzaf R, Amanlou M. Eur. J. Org. Chem. 2018; 3001
- 41 Adib M, Rajai-Daryasarei S, Pashazadeh R, Jahani M, Amanlou M. Synlett 2018; 29: 1583
- 42 Majumdar KC, Biswas A. Monatsh. Chem. 2004; 135: 1001
- 43 El-Dean AM. K, Zaki RM, Geies AA, Radwan SM, Tolba MS. Russ. J. Bioorg. Chem. 2013; 39: 553
- 44 Weißenfels M, Hantschmann A, Steinführer T, Birkner E. Z. Chem. (Leipzig, Ger.) 1989; 29: 166
- 45 Akchurin IO, Yakhutina AI, Bochkov AY, Solovjova NP, Traven VF. Heterocycl. Commun. 2018; 24: 85
- 46 Shi L, Yu H, Zeng X, Yang S, Gong S, Xiang H, Zhang K, Shao G. New J. Chem. 2020; 44: 6232
- 47 Iaroshenko VO, Erben F, Mkrtchyan S, Hakobyan A, Vilches-Herrera M, Dudkin S, Bunescu A, Villinger A, Sosnovskikh VY, Langer P. Tetrahedron 2011; 67: 7946
- 48 Yang L, Liu M, Sheng K, Li X, Du J, Ning Y, Wang X, Li J, Zhang Y, Wu S. New J. Chem. 2019; 43: 4188
- 49 Lee T.-H, Jayakumar J, Cheng C.-H, Chuang S.-C. Chem. Commun. 2013; 49: 11797
- 50 Fu L, Li S, Cai Z, Ding Y, Guo X.-Q, Zhou L.-P, Yuan D, Sun Q.-F, Li G. Nat. Catal. 2018; 1: 469
- 51 Iaroshenko VO, Ali S, Mkrtchyan S, Gevorgyan A, Babar TM, Semeniuchenko V, Hassan Z, Villinger A, Langer P. Tetrahedron Lett. 2012; 53: 7135
- 52 Shkoor M, Su H.-L, Ahmed S, Hegazy S. J. Heterocycl. Chem. 2020; 57: 813
- 53 Fatunsin O, Iaroshenko V, Dudkin S, Shkoor M, Volochnyuk D, Gevorgyan A, Langer P. Synlett 2010; 1533
- 54 Peña J, Moro RF, Basabe P, Marcos IS, Díez D. RSC Adv. 2012; 2: 8041
- 55 Thieno[3,2-c]chromen-4-ones 5a–g; General ProcedureA solution of 4-chloro-3-formylcoumarin (1; 1.0 equiv, 1.0 mmol) in MeCN (5.0 mL) was added to a solution of Na2S·9 H2O (1.0 mmol, 1.0 equiv) in H2O (5.0 mL) at a low temperature (<10 °C), and the resultant solution was stirred at <10 °C for 30 min. The appropriate α-halo ketone (1.0 mmol, 1.0 equiv) and l-proline (0.3 mmol, 0.3 equiv) were added, and the temperature was increased to 60 °C. The mixture was then stirred at 60 °C until a solid precipitated. The solid was then collected and purified by crystallization from MeCN.2-Benzoyl-4H-thieno[3,2-c]chromen-4-one (5a) White crystals; yield: 0.19 g (63%); mp 258–260 °C. 1H NMR (600 MHz, CDCl3): δ = 7.37 (t, J = 7.8 Hz, 1 H), 7.44 (d, J = 7.8 Hz, 1 H), 7.54 (t, J = 7.2 Hz, 2 H), 7.58 (t, J = 7.2 Hz, 1 H), 7.65 (t, J = 7.8 Hz, 1 H), 7.81 (d, J = 7.8 Hz, 1 H), 7.90 (d, J = 7.2 Hz, 2 H), 8.12 (s, 1 H). 13C NMR (150 MHz, CDCl3): δ = 116.4, 117.8, 124.3, 125.2, 125.6, 128.8, 129.2, 132.3, 133.1, 133.5, 136.6, 143.8, 152.0, 153.8, 156.9, 187.6. 1H–1H COSY: The continuous cross-peaks at δ = 7.81–7.37–7.58–7.44 and 7.90 (2 H)–7.58 (2 H)–7.65 (1 H) represent the protons on the coumarin and benzoyl groups, respectively. Anal. calcd for C18H10O3S: C, 70.58; H, 3.29. Found: C, 70.67; H, 3.31. MS (ESI): m/z (%): 307 (20), 306 (100), 229 (60), 105 (49), 77 (38).
- 56 Venkatanarayana M, Dubey PK. J. Heterocycl. Chem. 2014; 51: 877
- 57 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 58 Dalko PI, Moison L. Angew. Chem. Int. Ed. 2004; 43: 5138