Synlett 2023; 34(09): 1068-1074
DOI: 10.1055/a-2002-4122
letter

Gold-Catalyzed Formal (3+2) Cycloaddition in an Ionic Liquid: Environmentally Friendly and Stereoselective Synthesis of Polysubstituted Indanes from Benzylic Alcohols and 1-Phenylpropenes

Nobuyoshi Morita
,
Hitomi Chiaki
,
Kanae Ikeda
,
Kosaku Tanaka III
,
Yoshimitsu Hashimoto
,
Osamu Tamura
This work was financially supported by the JSPS KAKENHI (grant number 20 K05517).
 


Abstract

A gold-catalyzed formal (3+2) cycloaddition of benzylic alcohols with 1-phenylpropenes in an ionic liquid permits the environmentally friendly stereoselective synthesis of polysubstituted indanes in good yields and with high selectivity. The gold catalyst can be recycled at least five times.


#

The efficient synthesis of polysubstituted indanes is of great importance because of their potent and diverse biological activities.[1] Examples include diaporindene A[2] (antiinflammatory activity), asarone dimer[3] (insect-growth regulator, fungicide, insecticide, sedative, and hyperthermic agent), and enrasentan[4] [5] (antagonist of nonpeptide endothelin receptors) (Figure [1]).

Zoom Image
Figure 1 Natural and synthetic polysubstituted indanes

Therefore, much effort has been directed at the development of efficient synthetic pathways to polysubstituted indanes.[6] [7] Reported methods include dimerization[8] of 1-phenylpropenes and the formal (3+2) cycloaddition[9,10] of benzylic alcohols with 1-phenylpropenes. However, these methods often require the use of a stoichiometric amount of a reagent (BF3·OEt2 or SnCl4), and a toxic volatile halogenated solvent (CH2Cl2 or CHCl3) is employed in many cases. Consequently, there is a need to develop methods that use environmentally benign solvents and sustainable (recyclable) reagents to advance green chemistry.

Zoom Image
Scheme 1 (a) Gold-catalyzed dimerization of 1-phenylpropenes (previous work). (b) Formal (3+2) cycloaddition of p-quinones with 1-phenylpropenes (previous work). (c) Formal (3+2) cycloaddition of benzylic alcohols with 1-phenylpropenes (this work).

We recently reported an environmentally friendly and stereoselective synthesis of cyclic compounds (1,2,3-trisubstituted indanes[11] and 2-aryl-3-methyl-dihydrobenzofurans[12]) by the strategic use of a π-philic (soft) gold(I) catalyst and an oxophilic (hard) gold(III) catalyst[13] in an ionic liquid[14] (Scheme [1]). Thus, treatment of 1-phenylpropenes with a soft gold(I) catalyst (AuCl) resulted in dimerization to furnish 1,2,3-trisubstituted indanes with good stereoselectivity, due to activation of the double bond of 1-phenylpropenes by coordination of gold(I) (Scheme [1a]). In contrast, similar treatment of 1-phenylpropenes and p-quinones with a hard gold(III) catalyst induced formal (3+2) cycloaddition to afford 2-aryl-3-methyldihydrobenzofurans with high stereoselectivity, due to activation of the carbonyl oxygen of the p-quinone by coordination to gold(III), even in the presence of 1-phenylpropenes (Scheme [1b]). Moreover, recycling of the gold catalyst/ionic liquid was achieved in both reactions (Schemes 1a and 1b).

As a part of our continuing research on environmentally friendly gold-catalyzed reactions, we next focused on the formal (3+2) cycloaddition of benzylic alcohols with 1-phenylpropenes in an ionic liquid to prepare polysubstituted indanes (Scheme [1c]). Here, we report a gold-catalyzed, environmentally friendly, stereoselective synthesis of polysubstituted indanes in an ionic liquid through a formal (3+2) cycloaddition of benzylic alcohols with 1-phenylpropenes. This reaction is advantageous from both environmental and economic points of view, as it does not require the use of a toxic volatile halogenated solvent or a stoichiometric amount of reagent, and the gold catalyst/ionic liquid can be recycled several times.

Table 1 Optimization of the Reaction Conditions for the Gold-Catalyzed Formal (3+2) Cycloaddition of Benzylic Alcohol 1a with trans-Anethole (2a)

Entry

Catalyst (mol%)

Temp (°C)

Time (h)

Yield (%) of 3aa (trans/cis)

1

AuBr3 (5)

rt

0.5

58 (98:2)

2

AuBr3 (2)

rt

1.5

64 (98:2)

3

AuBr3 (1)

60

0.5

64 (98:2)

4

AuCl (1)

60

0.5

75 (96:4)

5a

AuCl (1)

60

77

35 (96:4)

a The reaction was carried out in DCE.

Initially, we investigated the formal (3+2) cycloaddition of 3,4-dimethoxybenzyl alcohol (1a) with trans-anethole (2a) in 3-ethyl-1-methyl-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]) in the presence of a gold catalyst that can activate the hydroxy group of 1a (Table [1]). The gold(III) catalyst AuBr3 afforded the desired indane 3aa in a moderate yield with great selectivity (Table [1], entries 1–3), whereas the gold(I) catalyst AuCl (1 mol%) furnished 3aa in a good yield with high selectivity (entry 4). In terms of both yield and stereoselectivity, AuCl (1 mol%) in the ionic liquid appeared to be the best catalyst for this reaction.

NMR spectroscopic data supported the formation of a 1,2-disubstituted indane trans-3aa, and the expected structure was confirmed by means of X-ray crystal-structure analysis of 3aa (Figure [2]).[15] Reactions in other solvents ([EMIM][AcO], [EMIM][BF4], [EMIM][MeSO4], or [EMIM][(MeO)2PO2]) gave little or no 3aa. In the case of the reaction with AuCl (1 mol%), the use of an organic solvent (Dichroloethane:DCE) reduced the yield of 3aa to 35% and increased the reaction time to 77 hours (entry 3 vs entry 5). Lee’s group has reported various advantages of ionic liquids for catalytic reactions, including the formation of more-reactive catalysts and the stabilization of reactive intermediates and transition states.[16] Although the precise reason for the high activity of AuCl in [EMIM][NTf2] (entry 4) remains unclear, two possibilities can be considered. The first is that an active gold species, AuNTf2, might be generated by anion exchange between the chloride ion of the gold catalyst and the NTf2 ion of the ionic liquid [EMIM][NTf2]. The second possibility is the formation of a reactive gold species bearing an N-heterocyclic carbene ligand,[17] which might be generated from the EMIM cation of [EMIM][NTf2].

Zoom Image
Figure 2 X-ray crystal structure of the 1,2-disubstituted indane trans-3aa

Table 2 Effect of Substituents on Benzylic Alcohols 1ac on the Gold-Catalyzed Formal (3+2) Cycloaddition

Entry

1

R1

R2

Product

Yield (%) (trans/cis)

1

1a

MeO

MeO

3aa

75 (96:4)

2

1b

MeO

H

3ba

trace

3

1c

H

H

Zoom Image
Scheme 2 Scope of the gold-catalyzed formal (3+2) cycloaddition of benzylic alcohols 1a and 1df with 1-phenylpropenes 2ad

To examine the effect of ring substituents on the benzylic alcohol 1, we conducted the gold-catalyzed formal (3+2) cycloaddition of benzylic alcohols 1ac with trans-anethole (2a) (Table [2]). Whereas the reaction of benzylic alcohol 1a, bearing two methoxy groups, afforded a good yield of 3aa (Table [2], entry 1), the reaction of benzylic alcohol 1b having one methoxy group afforded only a trace of the corresponding product 3ba (entry 2). In the case of benzyl alcohol (1c), bearing no methoxy group on the ring, no product was obtained (entry 3). Thus, the presence of two methoxy groups on the aromatic ring of the benzylic alcohol 1a appears to be required to obtain indane 3aa.

Next, we investigated the scope of the gold-catalyzed formal (3+2) cycloaddition for the synthesis of disubstituted indanes 3 by using various benzylic alcohols 1a and 1df and 1-phenylpropenes 2ad in the presence of 1 mol% AuCl in the ionic liquid [EMIM][NTf2] (Scheme [2]). Various combinations of 1a or 1df with 2ad afforded the corresponding products 3 in moderate to good yields with high selectivity, even in the presence of various oxygen-containing functional groups on the substrates.

Zoom Image
Scheme 3 Gold-catalyzed formal (3+2) cycloaddition of benzylic alcohols 1g and 1h with 1-phenylpropenes 2ae in an ionic liquid to give 1,2,3-trisubstituted indanes 4

In addition, we extended the procedure to prepare 1,2,3-trisubstituted indanes 4 (Scheme [3]). Treatment of benzylic alcohols 1g and 1h bearing an ethyl group at the benzylic position with 1-phenylpropenes 2ae in the presence of 1 mol% AuCl in the ionic liquid [EMIM][NTf2] afforded the corresponding 1,2,3-trisubstituted indanes 4 in high yields with good selectivity.[18] Interestingly, the yields of the 1,2,3-trisubstituted indanes 4 in this reaction were generally higher than those of the 1,2-disubstituted indanes 3.

In the case of indene (2f), the gold-catalyzed formal (3+2) cycloaddition with benzylic alcohol 1g afforded the corresponding indane 4gf in high yield, albeit with low stereoselectivity (Scheme [4]).

Zoom Image
Scheme 4 Gold-catalyzed formal (3+2) cycloaddition of benzylic alcohol 1g with indene (2f)

In addition, even when the methyl group at the 2-position of 1-phenylpropene 2 was replaced with an ester group (2g), the reaction proceeded to give the corresponding indane 4gg (Scheme [5]). Although the use of one equivalent of ethyl trans-p-methoxycinnamate (2g) in the reaction resulted in a moderate yield, the use of three equivalents of 2g furnished the desired product 4gg in a good yield.[19] The ester group in indane 4gg could be a useful functionality for further elaboration.

Zoom Image
Scheme 5 Gold-catalyzed formal (3+2) cycloaddition of benzylic alcohol 1g with ethyl trans-p-methoxycinnamate (2g)

The structure of 4gg was definitively established by means of X-ray crystal structure analysis (Figure [3]).[20]

We next conducted a large-scale preparation of indane 3aa and we examined the effect of a reduced amount of the gold catalyst (Scheme [6]). The large-scale preparation of 1,2-disubstituted indane 3aa was achieved from 1.0 g (6.0 mmol) of benzylic alcohol 1a and trans-anethole (2a), affording the product 3aa in 73% yield.[21] Moreover, even when the amount of AuCl was reduced to 0.1 mol%, the reaction proceeded smoothly over a slightly longer reaction time (5 h) to give the desired product 3aa in good yield with high selectivity.

Zoom Image
Figure 3 X-ray crystal structure of 1,2,3-trisubstituted indane 4gg
Zoom Image
Scheme 6 Large-scale preparation of indane 3aa and the effect of a reduced amount of the gold catalyst (0.1 mol%)

Finally, recycling of the gold catalyst in ionic liquid [EMIM][NTf2] was investigated. In the reactions of benzylic alcohols 1a and 1g with trans-anethole (2a), the AuCl (1 mol%) and ionic liquid [EMIM][NTf2] could be recycled at least five times with only slight loss of activity (Table [3]).[22]

Table 3 Recycling of the Gold Catalyst and Solvent in the Formal (3+2) Cycloaddition of Benzyl Alcohols 1a and 1g with trans-anethole (2a)

Run

Time (h)

Yield (%) (3aa/3′aa)

Time (h)

Yield (%) (4ga/4′ga)

1

0.5

75 (96:4)

0.5

97 (6:1)

2

20

58 (96:4)

22

81 (6:1)

3

20

66 (95:5)

22

79 (6:1)

4

22

57 (96:4)

24

73 (6:1)

5

24

48 (96:4)

24

71 (6:1)

A plausible mechanistic model for the reaction of benzylic alcohol 1g with trans-anethole (2a) in [EMIM][NTf2] is shown in Scheme [7]. The gold species coordinates to the oxygen atom of the benzylic alcohol 1g, forming active intermediate I. Addition of trans-anethole (2a) to the active intermediate I affords intermediate II bearing an electron-rich aromatic ring and an electron-deficient ring. Cyclization takes place between the aromatic ring and the benzylic position in intermediate II to furnish intermediate III, which undergoes aromatization to provide indane 4ga with good selectivity (1,2-cis-2,3-trans). The first C–C bond formation (addition step, III) would be important in controlling the stereochemistry. In the addition step, π–π stacking between the electron-rich ring and the electron-deficient ring in intermediate I would make the orthogonal approach favorable, leading to the formation of a 1,2-cis configuration. Cyclization proceeds again under the influence of π–π stacking in intermediate II to form a five-membered ring with a 1,2-cis-2,3-trans stereochemistry.

Zoom Image
Scheme 7 Plausible reaction mechanism for the gold-catalyzed formal (3+2) cycloaddition of benzylic alcohol 1g and trans-anethole (2a)
Zoom Image
Figure 4

In summary, we have developed a stereoselective, gold-catalyzed formal (3+2) cyclization of benzylic alcohols 1 with 1-phenylpropenes 2 in the ionic liquid [EMIM][NTf2]. This reaction provides an environmentally friendly alternative for the synthesis of a variety of polysubstituted indanes. We are currently pursuing further applications of this environmentally benign and sustainable catalyst system.


#

Conflict of Interest

The authors declare no conflict of interest.

Supporting Information

  • References and Notes

  • 1 Vilums M, Heuberger J, Heitman LH, IJzerman AP. Med. Res. Rev. 2015; 35: 1097
    • 2a Cui H, Liu Y, Li J, Huang X, Yan T, Cao W, Liu H, Long Y, She Z. J. Org. Chem. 2018; 83: 11804
    • 2b Liu H.-B, Liu Z.-M, Chen Y.-C, Tan H.-B, Li S.-N, Li D.-L, Liu H.-X, Zhang W.-M. Chin. J. Nat. Med. 2021; 19: 874
    • 3a Saxena DB. Phytochemistry 1986; 25: 553
    • 3b Zanoli P, Avallone R, Baraldi M. Phytother. Res. 1998; 12: S114
    • 3c Jasicka-Misiak I, Lipok J, Moliszewska E. Chem. Inz. Ekol. 1999; 6: 149
    • 4a Elliot JD, Lago MA, Cousins RD, Gao A, Leber JD, Erhard KF, Nambi P, Elshourbagy NA, Kumar C, Lee JA, Bean JW, DeBrosse CW, Eggleston DS, Brooks DP, Feuerstein G, Ruffolo RR. Jr, Weinstock J, Gleason JG, Peishoff CE, Ohlstein EH. J. Med. Chem. 1994; 37: 1553
    • 4b Ohlstein EH, Nambi P, Lago A, Hay DW. P, Beck G, Fong K.-L, Eddy EP, Smith P, Ellens H, Elliott JD. J. Pharmacol. Exp. Ther. 1996; 276: 609
    • 5a Clark WM, Tickner-Eldridge AM, Huang GK, Pridgen LN, Olsen MA, Millis RJ, Lantos I, Baine NH. J. Am. Chem. Soc. 1998; 120: 4550
    • 5b Pridgen LN, Huang GK. Tetrahedron Lett. 1998; 39: 8421
    • 5c Itoh T, Mase T, Nishikata T, Iyama T, Tachikawa H, Kobayashi Y, Yamamoto Y, Miyaura N. Tetrahedron 2006; 62: 9610
    • 5d Kim H, Yun J. Adv. Synth. Catal. 2010; 352: 1881
    • 6a Borie C, Ackermann L, Nechab M. Chem. Soc. Rev. 2016; 45: 1368
    • 6b Gabriele B, Mancuso R, Veltri L. Chem. Eur. J. 2016; 22: 5056
    • 7a Angle SR, Arnaiz DO. J. Org. Chem. 1990; 55: 3708
    • 7b Navarro C, Csákÿ AG. Org. Lett. 2008; 10: 217
    • 7c Watson MP, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 12594
    • 7d Yuan H, Hu J, Gong Y. Tetrahedron: Asymmetry 2013; 24: 699
    • 7e Zhu M, Liu J, Yu J, Chen L, Zhang C, Wang L. Org. Lett. 2014; 16: 1856
    • 7f Wang Y, Wu X, Chi YR. Chem. Commun. 2017; 53: 11952
    • 7g Arredondo V, Roa DE, Gutman ES, Huynh NO, Van Vranken DL. J. Org. Chem. 2019; 84: 14745
    • 7h Chang M.-Y, Wu Y.-S, Tsai Y.-L, Chen H.-Y. J. Org. Chem. 2019; 84: 11699
    • 7i Gao Z, Ren L, Wang R, Shi L, Wang Y, Su F, Hao H.-D. Org. Lett. 2021; 23: 5684
    • 8a MacMillan J, Martin IL, Morris DJ. Tetrahedron 1969; 25: 905
    • 8b Al-Farhan E, Keehn PM, Stevenson R. J. Chem. Res., Synop. 1992; 36
    • 8c Al-Farhan E, Keehn PM, Stevenson R. J. Chem. Res., Synop. 1992; 100
    • 8d Benito A, Corma A, García H, Primo J. Appl. Catal., A 1994; 116: 127
    • 8e Alesso EN, Aguirre J, Lantaño B, Finkielsztein L, Moltrasio GY, Vázquez PG, Pizzio LR, Caceres C, White M, Thomas HJ. Molecules 2000; 5: 414
    • 8f Madhavan D, Murugalakshmi M, Lalitha A, Pitchumani K. Catal. Lett. 2001; 73: 1
    • 8g Alesso E, Torviso R, Erlich M, Finkielsztein L, Lantaño B, Moltrasio G, Aguirre J, Vázquez P, Pizzio L, Cáceres C, Blanco M, Thomas H. Synth. Commun. 2002; 32: 3803
    • 8h Alvarez-Thon L, Carrasco-Altamirano H, Espinoza-Catalán L, Gallardo-Araya C, Cardona-Villada W, Ibañez A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2006; 62: o2000
    • 8i Kouznetsov VV, Merchan Arenas DR. Tetrahedron Lett. 2009; 50: 1546
    • 8j Grigor’eva NG, Talipova RR, Korzhova LF. Vosmerikov A. V, Kutepov BI, Dzhemilev UM. Russ. Chem. Bull. 2009; 58: 59
    • 8k Davis MC, Guenthner AJ, Groshens TJ, Reams JT, Mabry JM. J. Polym. Sci. Part A: Polym. Chem. 2012; 50: 4127
    • 8l Gonzalez-de-Castro A, Xiao J. J. Am. Chem. Soc. 2015; 137: 8206
    • 8m Nomura E, Noda T, Gomi D, Mori H. ACS Omega 2018; 3: 12746
    • 9a Angle SR, Arnaiz DO. J. Org. Chem. 1992; 57: 5937
    • 9b Alesso E, Torviso R, Lantaño B, Erlich M, Finkielsztein LM, Moltrasio G, Aguirre JM, Brunet E. ARKIVOC 2003; (x): 283
    • 9c Lantaño B, Aguirre JM, Finkielsztein L, Alesso EN, Brunet E, Moltrasio GY. Synth. Commun. 2004; 34: 625
    • 9d Pizzio LR, Vázquez PG, Cáceres CV, Blanco MN, Alesso EN, Torviso MR, Lantaño B, Moltrasio GY, Aguirre JM. Appl. Catal., A 2005; 287: 1
    • 9e Lantaño B, Aguirre JM, Ugliarolo EA, Benegas ML, Moltrasio GY. Tetrahedron 2008; 64: 4090
    • 9f Lantaño B, Aguirre JM, Ugliarolo EA, Torviso R, Pomilio N, Moltrasio GY. Tetrahedron 2012; 68: 913
    • 9g Li H.-H. Chin. Chem. Lett. 2015; 26: 320
    • 9h Li Y, Zhang L, Zhang Z, Xu J, Pan Y, Xu C, Liu L, Li Z, Yu Z, Li H, Xu L. Adv. Synth. Catal. 2016; 358: 2148
    • 9i Sai M. Eur. J. Org. Chem. 2019; 1102
    • 9j Yang B, Dong K, Li X.-S, Wu L.-Z, Liu Q. Org. Lett. 2022; 24: 2040
    • 10a Olivero S, Perriot R, Duñach E, Baru AR, Bell ED, Mohan RS. Synlett 2006; 2021
    • 10b Sarnpitak P, Trongchit K, Kostenko Y, Sathalalai S, Gleeson MP, Ruchirawat S, Ploypradith P. J. Org. Chem. 2013; 78: 8281
    • 10c Iakovenko RO, Chicca A, Nieri D, Reynoso-Moreno I, Gertsch J, Krasavin M, Vasilyev AV. Tetrahedron 2019; 75: 624
  • 11 Morita N, Mashiko R, Hakuta D, Eguchi D, Ban S, Hashimoto Y, Okamoto I, Tamura O. Synthesis 2016; 48: 1927
  • 12 Morita N, Ikeda K, Chiaki H, Araki R, Tanaka KIII, Hashimoto Y, Tamura O. Heterocycles 2021; 103: 714
    • 13a Morita N, Yasuda A, Shibata M, Ban S, Hashimoto Y, Okamoto I, Tamura O. Org. Lett. 2015; 17: 2668
    • 13b Morita N, Tsunokake T, Narikiyo Y, Harada M, Tachibana T, Saito Y, Ban S, Hashimoto Y, Okamoto I, Tamura O. Tetrahedron Lett. 2015; 56: 6269
    • 13c Morita N, Saito Y, Muraji A, Ban S, Hashimoto Y, Okamoto I, Tamura O. Synlett 2016; 27: 1936
    • 13d Morita N, Miyamoto M, Yoda A, Yamamoto M, Ban S, Hashimoto Y, Tamura O. Tetrahedron Lett. 2016; 57: 4460
    • 13e Morita N, Oguro K, Takahashi S, Kawahara M, Ban S, Hashimoto Y, Tamura O. Heterocycles 2017; 95: 172
    • 13f Morita N, Sano A, Sone A, Aonuma S, Matsunaga A, Hashimoto Y, Tamura O. Heterocycles 2018; 97: 719
    • 14a Liu X, Pan Z, Shu X, Duan X, Liang Y. Synlett 2006; 1962
    • 14b Ambrogio I, Arcadi A, Cacchi S, Fabrizi G, Marinelli F. Synlett 2007; 1775
    • 14c Aksın Ö, Krause N. Adv. Synth. Catal. 2008; 350: 1106
    • 14d Corma A, Domínguez I, Ródenas T, Sabater MJ. J. Catal. 2008; 259: 26
    • 14e Neaţu F, Pârvulescu VI, Michelet V, Gênet J.-P, Goguet A, Hardacre C. New J. Chem. 2009; 33: 102
    • 14f Moreau X, Hours A, Fensterbank L, Goddard J.-P, Malacria M, Thorimbert S. J. Organomet. Chem. 2009; 694: 561
    • 14g Cui D.-M, Ke Y.-N, Zhuang D.-W, Wang Q, Zhang C. Tetrahedron Lett. 2010; 51: 980
    • 14h Lempke L, Fischer T, Bell J, Kraus W, Rurack K, Krause N. Org. Biomol. Chem. 2015; 13: 3787
    • 14i Lempke L, Sak H, Kubicki M, Krause N. Org. Chem. Front. 2016; 3: 1514
    • 14j Baron M, Biffis A. Eur. J. Org. Chem. 2019; 3687
  • 15 CCDC 2223306 contains the supplementary crystallographic data for compound 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 16a Song CE, Shim WH, Roh EJ, Choi JH. Chem. Commun. 2000; 1695
    • 16b Song CE, Shim WH, Roh EJ, Lee S.-g, Choi JH. Chem. Commun. 2001; 1122
    • 16c Song CE, Jung D.-u, Choung SY, Roh EJ, Lee S.-g. Angew. Chem. Int. Ed. 2004; 43: 6183
    • 16d Kim JH, Lee JW, Shin US, Lee JY, Lee S.-g, Song CE. Chem. Commun. 2007; 4683
    • 16e Park BY, Ryu KY, Park JH, Lee S.-g. Green Chem. 2009; 11: 946
    • 16f Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee S.-g. Acc. Chem. Res. 2010; 43: 985
    • 17a Herrmann WA, Elison M, Fischer J, Köcher C, Artus GR. J. Angew. Chem. Int. Ed. 1995; 34: 2371
    • 17b Xu L, Chen W, Xiao J. Organometallics 2000; 19: 1123
    • 17c McGuinness DS, Cavell KJ, Yates BF. Chem. Commun. 2001; 355
    • 17d Mathews CJ, Smith PJ, Welton T, White AJ. P, Williams DJ. Organometallics 2001; 20: 3848
    • 17e Clement ND, Cavell KJ. Angew. Chem. Int. Ed. 2004; 43: 3845
  • 18 There are four possible diastereomers for 1,2,3-trisubstituted indanes 4, namely, α-(1,2-cis-2,3-trans), β-(1,2-cis-2,3-cis), γ-(1,2-trans-2,3-trans), and δ-(1,2-trans-2,3-cis), as shown below in Figure 4. The stereochemical assignment of the 1,2,3-trisubstituted indanes 4 was based on 1H NMR spectra, chemical shifts (ppm), coupling constants (J values), and the application of double-irradiation techniques. MacMillan et al. reported J values for the α-(1,2-cis-2,3-trans) and γ-(1,2-trans-2,3-trans) configurations of 1,2,3-trisubstituted indanes 4 (see ref. 8a). Lantaño et al. also reported similar chemical shifts (ppm) and coupling constants (J values) for the α-(1,2-cis-2,3-trans) and γ-(1,2-trans-2,3-trans) configurations of 1,2,3-trisubstituted indanes 4 (see ref. 9e).
  • 19 Ethyl (1R*,2S*,3S*)- and (1R*,2R*,3R*)-1-Ethyl-5,6-dimethoxy-3-(4-methoxyphenyl)indane-2-carboxylate (4gg and 4′gg) 1 mol% AuCl (1.2 mg, 0.0051 mmol) was added at rt to a solution of benzylic alcohol 1g (100 mg, 0.51 mmol) and ethyl trans-p-methoxycinnamate (2g) (315 mg, 1.53 mmol) in [EMIM][NTf2] (1 mL). When benzylic alcohol 1g was completely consumed (TLC; usually <30 min), the product was extracted with Et2O and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexane–EtOAc) to give 4gg and 4′gg as a colorless oil; yield: 158 mg (81%, 4:1). IR (KBr): 2958, 2933, 2833, 1728, 1609, 1510, 1500, 1463 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.18 (d, J = 8.7 Hz, 2 H × 4/5)*, 7.13 (d, J = 8.7 Hz, 2 H × 1/5), 6.88 (d, J = 8.7 Hz, 2 H × 1/5), 6.86 (d, J = 8.7 Hz, 2 H × 4/5)*, 6.78 (s, 1 H × 4/5)*, 6.75 (s, 1 H × 1/5), 6.41 (s, 1 H × 4/5)*, 6.38 (s, 1 H × 1/5), 4.75 (d, J = 9.9 Hz, 1 H × 4/5)*, 4.52 (d, J = 9.3 Hz, 1 H × 1/5), 4.16 (q, J = 7.2 Hz, 2 H × 4/5)*, 4.14 (q, J = 7.2 Hz, 2 H × 1/5), 3.91 (s, 3 H × 4/5)*, 3.91 (s, 3 H × 1/5), 3.83 (s, 3 H × 1/5), 3.81 (s, 3 H × 4/5)*, 3.74 (s, 3 H × 4/5)*, 3.73 (s, 3 H × 1/5), 3.52–3.45 (m, 1 H × 1/5), 3.41 (t, J = 8.1 Hz, 1 H × 4/5)*, 3.41–3.34 (m, 1 H × 4/5)*, 2.86 (t, J = 9.0 Hz, 1 H × 1/5), 2.09–1.98 (m, 1 H × 1/5), 1.80–1.50 (m, 2 H × 4/5)*, 1.27 (t, J = 7.2 Hz, 3 H × 4/5)*, 1.23 (t, J = 7.2 Hz, 3 H × 1/5), 0.99 (t, J = 7.5 Hz, 3 H × 1/5), 0.96 (t, J = 7.5 Hz, 3 H × 4/5)*. 13C NMR (75 MHz, CDCl3): δ = 175.0, 172.6*, 158.5, 158.4*, 148.8, 148.7*, 148.1*, 136.71*, 136.67*, 136.6, 136.2, 135.8, 135.5*, 129.7*, 129.3, 113.9, 113.8*, 108.1*, 107.8*, 107.7, 106.3, 60.7, 60.5, 60.3*, 60.2*, 56.1*, 56.0*, 55.2*, 53.9, 50.7*, 48.8, 47.7*, 26.5, 24.6*, 14.3*, 11.7*, 10.6. HRMS (EI): m/z [M+] calcd for C23H28O5: 384.1937; found: 384.1935.
  • 20 CCDC 2223279 contains the supplementary crystallographic data for compound 4gg. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 21 5,6-Dimethoxy-1-(4-methoxyphenyl)-2-methylindane (3aa); Enlarged-Scale Procedure 1 mol% AuCl (14 mg, 0.060 mmol) was added at rt to a solution of benzylic alcohol 1a (1.0 g, 6.0 mmol) and ethyl trans-anethole (2a) (0.88 g, 6.0 mmol) in [EMIM][NTf2] (5 mL). When benzylic alcohol 1a was completely consumed (TLC; usually <30 min), the product was extracted with Et2O and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexane–EtOAc) to give a colorless oil; yield: 1.3 g (73%). IR (KBr): 3033, 299, 2931, 2837, 1614, 1512, 1472, 1446, 1512, 1471, 1445, 1410, 1313, 1213, 1173, 1088, 1028, 995, 856, 820, 804, 764 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.11 (d, J = 8.7 Hz, 2 H), 6.87 (d, J = 8.7 Hz, 2 H), 6.79 (s, 1 H), 6.39 (s, 1 H), 3.88 (s, 3 H), 3.81 (s, 3 H), 3.72 (s, 3 H), 3.70 (d, J = 9.5 Hz, 1 H), 3.06 (dd, J = 14.9, 7.5 Hz, 1 H), 2.55 (dd, J = 14.9, 9.5 Hz, 1 H), 2.42–2.30 (m, 1 H), 1.17 (d, J = 6.6 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 158.2, 148.14, 148.07, 138.3, 136.4, 135.2, 129.4, 113.8, 108.1, 107.4, 58.9, 56.1, 56.1, 55.2, 46.9, 40.1, 18.4. HRMS (EI): m/z [M+] calcd for C19H22O3: 298.1569; found: 298.1569.
  • 22 In the recycling of the gold catalyst in this reaction, the reaction time was prolonged after the first cycle. The cause is assumed to be imidazole, which is a decomposition product generated when water produced during the reaction reacts with the ionic liquid in the presence of the gold catalyst.23 The generated imidazole might coordinate to the gold catalyst, significantly reducing its activity and prolonging the reaction time; however, this has not been confirmed.
  • 23 Vieira JC. B, Villetti MA, Frizzo CP. J. Mol. Liq. 2021; 330: 115618

Corresponding Authors

Nobuyoshi Morita
Showa Pharmaceutical University
Machida, Tokyo, 194-8543
Japan   
Osamu Tamura
Showa Pharmaceutical University
Machida, Tokyo, 194-8543
Japan   

Publication History

Received: 30 November 2022

Accepted after revision: 20 December 2022

Accepted Manuscript online:
21 December 2022

Article published online:
19 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References and Notes

  • 1 Vilums M, Heuberger J, Heitman LH, IJzerman AP. Med. Res. Rev. 2015; 35: 1097
    • 2a Cui H, Liu Y, Li J, Huang X, Yan T, Cao W, Liu H, Long Y, She Z. J. Org. Chem. 2018; 83: 11804
    • 2b Liu H.-B, Liu Z.-M, Chen Y.-C, Tan H.-B, Li S.-N, Li D.-L, Liu H.-X, Zhang W.-M. Chin. J. Nat. Med. 2021; 19: 874
    • 3a Saxena DB. Phytochemistry 1986; 25: 553
    • 3b Zanoli P, Avallone R, Baraldi M. Phytother. Res. 1998; 12: S114
    • 3c Jasicka-Misiak I, Lipok J, Moliszewska E. Chem. Inz. Ekol. 1999; 6: 149
    • 4a Elliot JD, Lago MA, Cousins RD, Gao A, Leber JD, Erhard KF, Nambi P, Elshourbagy NA, Kumar C, Lee JA, Bean JW, DeBrosse CW, Eggleston DS, Brooks DP, Feuerstein G, Ruffolo RR. Jr, Weinstock J, Gleason JG, Peishoff CE, Ohlstein EH. J. Med. Chem. 1994; 37: 1553
    • 4b Ohlstein EH, Nambi P, Lago A, Hay DW. P, Beck G, Fong K.-L, Eddy EP, Smith P, Ellens H, Elliott JD. J. Pharmacol. Exp. Ther. 1996; 276: 609
    • 5a Clark WM, Tickner-Eldridge AM, Huang GK, Pridgen LN, Olsen MA, Millis RJ, Lantos I, Baine NH. J. Am. Chem. Soc. 1998; 120: 4550
    • 5b Pridgen LN, Huang GK. Tetrahedron Lett. 1998; 39: 8421
    • 5c Itoh T, Mase T, Nishikata T, Iyama T, Tachikawa H, Kobayashi Y, Yamamoto Y, Miyaura N. Tetrahedron 2006; 62: 9610
    • 5d Kim H, Yun J. Adv. Synth. Catal. 2010; 352: 1881
    • 6a Borie C, Ackermann L, Nechab M. Chem. Soc. Rev. 2016; 45: 1368
    • 6b Gabriele B, Mancuso R, Veltri L. Chem. Eur. J. 2016; 22: 5056
    • 7a Angle SR, Arnaiz DO. J. Org. Chem. 1990; 55: 3708
    • 7b Navarro C, Csákÿ AG. Org. Lett. 2008; 10: 217
    • 7c Watson MP, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 12594
    • 7d Yuan H, Hu J, Gong Y. Tetrahedron: Asymmetry 2013; 24: 699
    • 7e Zhu M, Liu J, Yu J, Chen L, Zhang C, Wang L. Org. Lett. 2014; 16: 1856
    • 7f Wang Y, Wu X, Chi YR. Chem. Commun. 2017; 53: 11952
    • 7g Arredondo V, Roa DE, Gutman ES, Huynh NO, Van Vranken DL. J. Org. Chem. 2019; 84: 14745
    • 7h Chang M.-Y, Wu Y.-S, Tsai Y.-L, Chen H.-Y. J. Org. Chem. 2019; 84: 11699
    • 7i Gao Z, Ren L, Wang R, Shi L, Wang Y, Su F, Hao H.-D. Org. Lett. 2021; 23: 5684
    • 8a MacMillan J, Martin IL, Morris DJ. Tetrahedron 1969; 25: 905
    • 8b Al-Farhan E, Keehn PM, Stevenson R. J. Chem. Res., Synop. 1992; 36
    • 8c Al-Farhan E, Keehn PM, Stevenson R. J. Chem. Res., Synop. 1992; 100
    • 8d Benito A, Corma A, García H, Primo J. Appl. Catal., A 1994; 116: 127
    • 8e Alesso EN, Aguirre J, Lantaño B, Finkielsztein L, Moltrasio GY, Vázquez PG, Pizzio LR, Caceres C, White M, Thomas HJ. Molecules 2000; 5: 414
    • 8f Madhavan D, Murugalakshmi M, Lalitha A, Pitchumani K. Catal. Lett. 2001; 73: 1
    • 8g Alesso E, Torviso R, Erlich M, Finkielsztein L, Lantaño B, Moltrasio G, Aguirre J, Vázquez P, Pizzio L, Cáceres C, Blanco M, Thomas H. Synth. Commun. 2002; 32: 3803
    • 8h Alvarez-Thon L, Carrasco-Altamirano H, Espinoza-Catalán L, Gallardo-Araya C, Cardona-Villada W, Ibañez A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2006; 62: o2000
    • 8i Kouznetsov VV, Merchan Arenas DR. Tetrahedron Lett. 2009; 50: 1546
    • 8j Grigor’eva NG, Talipova RR, Korzhova LF. Vosmerikov A. V, Kutepov BI, Dzhemilev UM. Russ. Chem. Bull. 2009; 58: 59
    • 8k Davis MC, Guenthner AJ, Groshens TJ, Reams JT, Mabry JM. J. Polym. Sci. Part A: Polym. Chem. 2012; 50: 4127
    • 8l Gonzalez-de-Castro A, Xiao J. J. Am. Chem. Soc. 2015; 137: 8206
    • 8m Nomura E, Noda T, Gomi D, Mori H. ACS Omega 2018; 3: 12746
    • 9a Angle SR, Arnaiz DO. J. Org. Chem. 1992; 57: 5937
    • 9b Alesso E, Torviso R, Lantaño B, Erlich M, Finkielsztein LM, Moltrasio G, Aguirre JM, Brunet E. ARKIVOC 2003; (x): 283
    • 9c Lantaño B, Aguirre JM, Finkielsztein L, Alesso EN, Brunet E, Moltrasio GY. Synth. Commun. 2004; 34: 625
    • 9d Pizzio LR, Vázquez PG, Cáceres CV, Blanco MN, Alesso EN, Torviso MR, Lantaño B, Moltrasio GY, Aguirre JM. Appl. Catal., A 2005; 287: 1
    • 9e Lantaño B, Aguirre JM, Ugliarolo EA, Benegas ML, Moltrasio GY. Tetrahedron 2008; 64: 4090
    • 9f Lantaño B, Aguirre JM, Ugliarolo EA, Torviso R, Pomilio N, Moltrasio GY. Tetrahedron 2012; 68: 913
    • 9g Li H.-H. Chin. Chem. Lett. 2015; 26: 320
    • 9h Li Y, Zhang L, Zhang Z, Xu J, Pan Y, Xu C, Liu L, Li Z, Yu Z, Li H, Xu L. Adv. Synth. Catal. 2016; 358: 2148
    • 9i Sai M. Eur. J. Org. Chem. 2019; 1102
    • 9j Yang B, Dong K, Li X.-S, Wu L.-Z, Liu Q. Org. Lett. 2022; 24: 2040
    • 10a Olivero S, Perriot R, Duñach E, Baru AR, Bell ED, Mohan RS. Synlett 2006; 2021
    • 10b Sarnpitak P, Trongchit K, Kostenko Y, Sathalalai S, Gleeson MP, Ruchirawat S, Ploypradith P. J. Org. Chem. 2013; 78: 8281
    • 10c Iakovenko RO, Chicca A, Nieri D, Reynoso-Moreno I, Gertsch J, Krasavin M, Vasilyev AV. Tetrahedron 2019; 75: 624
  • 11 Morita N, Mashiko R, Hakuta D, Eguchi D, Ban S, Hashimoto Y, Okamoto I, Tamura O. Synthesis 2016; 48: 1927
  • 12 Morita N, Ikeda K, Chiaki H, Araki R, Tanaka KIII, Hashimoto Y, Tamura O. Heterocycles 2021; 103: 714
    • 13a Morita N, Yasuda A, Shibata M, Ban S, Hashimoto Y, Okamoto I, Tamura O. Org. Lett. 2015; 17: 2668
    • 13b Morita N, Tsunokake T, Narikiyo Y, Harada M, Tachibana T, Saito Y, Ban S, Hashimoto Y, Okamoto I, Tamura O. Tetrahedron Lett. 2015; 56: 6269
    • 13c Morita N, Saito Y, Muraji A, Ban S, Hashimoto Y, Okamoto I, Tamura O. Synlett 2016; 27: 1936
    • 13d Morita N, Miyamoto M, Yoda A, Yamamoto M, Ban S, Hashimoto Y, Tamura O. Tetrahedron Lett. 2016; 57: 4460
    • 13e Morita N, Oguro K, Takahashi S, Kawahara M, Ban S, Hashimoto Y, Tamura O. Heterocycles 2017; 95: 172
    • 13f Morita N, Sano A, Sone A, Aonuma S, Matsunaga A, Hashimoto Y, Tamura O. Heterocycles 2018; 97: 719
    • 14a Liu X, Pan Z, Shu X, Duan X, Liang Y. Synlett 2006; 1962
    • 14b Ambrogio I, Arcadi A, Cacchi S, Fabrizi G, Marinelli F. Synlett 2007; 1775
    • 14c Aksın Ö, Krause N. Adv. Synth. Catal. 2008; 350: 1106
    • 14d Corma A, Domínguez I, Ródenas T, Sabater MJ. J. Catal. 2008; 259: 26
    • 14e Neaţu F, Pârvulescu VI, Michelet V, Gênet J.-P, Goguet A, Hardacre C. New J. Chem. 2009; 33: 102
    • 14f Moreau X, Hours A, Fensterbank L, Goddard J.-P, Malacria M, Thorimbert S. J. Organomet. Chem. 2009; 694: 561
    • 14g Cui D.-M, Ke Y.-N, Zhuang D.-W, Wang Q, Zhang C. Tetrahedron Lett. 2010; 51: 980
    • 14h Lempke L, Fischer T, Bell J, Kraus W, Rurack K, Krause N. Org. Biomol. Chem. 2015; 13: 3787
    • 14i Lempke L, Sak H, Kubicki M, Krause N. Org. Chem. Front. 2016; 3: 1514
    • 14j Baron M, Biffis A. Eur. J. Org. Chem. 2019; 3687
  • 15 CCDC 2223306 contains the supplementary crystallographic data for compound 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 16a Song CE, Shim WH, Roh EJ, Choi JH. Chem. Commun. 2000; 1695
    • 16b Song CE, Shim WH, Roh EJ, Lee S.-g, Choi JH. Chem. Commun. 2001; 1122
    • 16c Song CE, Jung D.-u, Choung SY, Roh EJ, Lee S.-g. Angew. Chem. Int. Ed. 2004; 43: 6183
    • 16d Kim JH, Lee JW, Shin US, Lee JY, Lee S.-g, Song CE. Chem. Commun. 2007; 4683
    • 16e Park BY, Ryu KY, Park JH, Lee S.-g. Green Chem. 2009; 11: 946
    • 16f Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee S.-g. Acc. Chem. Res. 2010; 43: 985
    • 17a Herrmann WA, Elison M, Fischer J, Köcher C, Artus GR. J. Angew. Chem. Int. Ed. 1995; 34: 2371
    • 17b Xu L, Chen W, Xiao J. Organometallics 2000; 19: 1123
    • 17c McGuinness DS, Cavell KJ, Yates BF. Chem. Commun. 2001; 355
    • 17d Mathews CJ, Smith PJ, Welton T, White AJ. P, Williams DJ. Organometallics 2001; 20: 3848
    • 17e Clement ND, Cavell KJ. Angew. Chem. Int. Ed. 2004; 43: 3845
  • 18 There are four possible diastereomers for 1,2,3-trisubstituted indanes 4, namely, α-(1,2-cis-2,3-trans), β-(1,2-cis-2,3-cis), γ-(1,2-trans-2,3-trans), and δ-(1,2-trans-2,3-cis), as shown below in Figure 4. The stereochemical assignment of the 1,2,3-trisubstituted indanes 4 was based on 1H NMR spectra, chemical shifts (ppm), coupling constants (J values), and the application of double-irradiation techniques. MacMillan et al. reported J values for the α-(1,2-cis-2,3-trans) and γ-(1,2-trans-2,3-trans) configurations of 1,2,3-trisubstituted indanes 4 (see ref. 8a). Lantaño et al. also reported similar chemical shifts (ppm) and coupling constants (J values) for the α-(1,2-cis-2,3-trans) and γ-(1,2-trans-2,3-trans) configurations of 1,2,3-trisubstituted indanes 4 (see ref. 9e).
  • 19 Ethyl (1R*,2S*,3S*)- and (1R*,2R*,3R*)-1-Ethyl-5,6-dimethoxy-3-(4-methoxyphenyl)indane-2-carboxylate (4gg and 4′gg) 1 mol% AuCl (1.2 mg, 0.0051 mmol) was added at rt to a solution of benzylic alcohol 1g (100 mg, 0.51 mmol) and ethyl trans-p-methoxycinnamate (2g) (315 mg, 1.53 mmol) in [EMIM][NTf2] (1 mL). When benzylic alcohol 1g was completely consumed (TLC; usually <30 min), the product was extracted with Et2O and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexane–EtOAc) to give 4gg and 4′gg as a colorless oil; yield: 158 mg (81%, 4:1). IR (KBr): 2958, 2933, 2833, 1728, 1609, 1510, 1500, 1463 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.18 (d, J = 8.7 Hz, 2 H × 4/5)*, 7.13 (d, J = 8.7 Hz, 2 H × 1/5), 6.88 (d, J = 8.7 Hz, 2 H × 1/5), 6.86 (d, J = 8.7 Hz, 2 H × 4/5)*, 6.78 (s, 1 H × 4/5)*, 6.75 (s, 1 H × 1/5), 6.41 (s, 1 H × 4/5)*, 6.38 (s, 1 H × 1/5), 4.75 (d, J = 9.9 Hz, 1 H × 4/5)*, 4.52 (d, J = 9.3 Hz, 1 H × 1/5), 4.16 (q, J = 7.2 Hz, 2 H × 4/5)*, 4.14 (q, J = 7.2 Hz, 2 H × 1/5), 3.91 (s, 3 H × 4/5)*, 3.91 (s, 3 H × 1/5), 3.83 (s, 3 H × 1/5), 3.81 (s, 3 H × 4/5)*, 3.74 (s, 3 H × 4/5)*, 3.73 (s, 3 H × 1/5), 3.52–3.45 (m, 1 H × 1/5), 3.41 (t, J = 8.1 Hz, 1 H × 4/5)*, 3.41–3.34 (m, 1 H × 4/5)*, 2.86 (t, J = 9.0 Hz, 1 H × 1/5), 2.09–1.98 (m, 1 H × 1/5), 1.80–1.50 (m, 2 H × 4/5)*, 1.27 (t, J = 7.2 Hz, 3 H × 4/5)*, 1.23 (t, J = 7.2 Hz, 3 H × 1/5), 0.99 (t, J = 7.5 Hz, 3 H × 1/5), 0.96 (t, J = 7.5 Hz, 3 H × 4/5)*. 13C NMR (75 MHz, CDCl3): δ = 175.0, 172.6*, 158.5, 158.4*, 148.8, 148.7*, 148.1*, 136.71*, 136.67*, 136.6, 136.2, 135.8, 135.5*, 129.7*, 129.3, 113.9, 113.8*, 108.1*, 107.8*, 107.7, 106.3, 60.7, 60.5, 60.3*, 60.2*, 56.1*, 56.0*, 55.2*, 53.9, 50.7*, 48.8, 47.7*, 26.5, 24.6*, 14.3*, 11.7*, 10.6. HRMS (EI): m/z [M+] calcd for C23H28O5: 384.1937; found: 384.1935.
  • 20 CCDC 2223279 contains the supplementary crystallographic data for compound 4gg. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 21 5,6-Dimethoxy-1-(4-methoxyphenyl)-2-methylindane (3aa); Enlarged-Scale Procedure 1 mol% AuCl (14 mg, 0.060 mmol) was added at rt to a solution of benzylic alcohol 1a (1.0 g, 6.0 mmol) and ethyl trans-anethole (2a) (0.88 g, 6.0 mmol) in [EMIM][NTf2] (5 mL). When benzylic alcohol 1a was completely consumed (TLC; usually <30 min), the product was extracted with Et2O and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexane–EtOAc) to give a colorless oil; yield: 1.3 g (73%). IR (KBr): 3033, 299, 2931, 2837, 1614, 1512, 1472, 1446, 1512, 1471, 1445, 1410, 1313, 1213, 1173, 1088, 1028, 995, 856, 820, 804, 764 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.11 (d, J = 8.7 Hz, 2 H), 6.87 (d, J = 8.7 Hz, 2 H), 6.79 (s, 1 H), 6.39 (s, 1 H), 3.88 (s, 3 H), 3.81 (s, 3 H), 3.72 (s, 3 H), 3.70 (d, J = 9.5 Hz, 1 H), 3.06 (dd, J = 14.9, 7.5 Hz, 1 H), 2.55 (dd, J = 14.9, 9.5 Hz, 1 H), 2.42–2.30 (m, 1 H), 1.17 (d, J = 6.6 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 158.2, 148.14, 148.07, 138.3, 136.4, 135.2, 129.4, 113.8, 108.1, 107.4, 58.9, 56.1, 56.1, 55.2, 46.9, 40.1, 18.4. HRMS (EI): m/z [M+] calcd for C19H22O3: 298.1569; found: 298.1569.
  • 22 In the recycling of the gold catalyst in this reaction, the reaction time was prolonged after the first cycle. The cause is assumed to be imidazole, which is a decomposition product generated when water produced during the reaction reacts with the ionic liquid in the presence of the gold catalyst.23 The generated imidazole might coordinate to the gold catalyst, significantly reducing its activity and prolonging the reaction time; however, this has not been confirmed.
  • 23 Vieira JC. B, Villetti MA, Frizzo CP. J. Mol. Liq. 2021; 330: 115618

Zoom Image
Figure 1 Natural and synthetic polysubstituted indanes
Zoom Image
Scheme 1 (a) Gold-catalyzed dimerization of 1-phenylpropenes (previous work). (b) Formal (3+2) cycloaddition of p-quinones with 1-phenylpropenes (previous work). (c) Formal (3+2) cycloaddition of benzylic alcohols with 1-phenylpropenes (this work).
Zoom Image
Figure 2 X-ray crystal structure of the 1,2-disubstituted indane trans-3aa
Zoom Image
Scheme 2 Scope of the gold-catalyzed formal (3+2) cycloaddition of benzylic alcohols 1a and 1df with 1-phenylpropenes 2ad
Zoom Image
Scheme 3 Gold-catalyzed formal (3+2) cycloaddition of benzylic alcohols 1g and 1h with 1-phenylpropenes 2ae in an ionic liquid to give 1,2,3-trisubstituted indanes 4
Zoom Image
Scheme 4 Gold-catalyzed formal (3+2) cycloaddition of benzylic alcohol 1g with indene (2f)
Zoom Image
Scheme 5 Gold-catalyzed formal (3+2) cycloaddition of benzylic alcohol 1g with ethyl trans-p-methoxycinnamate (2g)
Zoom Image
Figure 3 X-ray crystal structure of 1,2,3-trisubstituted indane 4gg
Zoom Image
Scheme 6 Large-scale preparation of indane 3aa and the effect of a reduced amount of the gold catalyst (0.1 mol%)
Zoom Image
Scheme 7 Plausible reaction mechanism for the gold-catalyzed formal (3+2) cycloaddition of benzylic alcohol 1g and trans-anethole (2a)
Zoom Image
Figure 4