Ultraschall Med 2023; 44(05): 537-543
DOI: 10.1055/a-2011-5944
Original Article

Lung Ultrasound as a Promising Diagnostic Tool for Primary Graft Dysfunction after Lung Transplantation

Lungenultraschall zur Diagnose des primären Transplantatversagens nach Lungentransplantation
Ines Schroeder
1   Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
,
Christina Scharf
1   Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
,
Julia Schneider
1   Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
,
Patricia Weggesser
1   Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
,
Lucas Hübner
1   Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
,
Nikolaus Kneidinger
2   Department of Internal Medicine V, University Hospital, LMU Munich, Munich, Germany
,
Sebastian Michel
3   Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
,
Christian Schneider
4   Department of Thoracic Surgery, University Hospital, LMU Munich, Munich, Germany
,
Dirk-Andre Clevert
5   Department of Radiology, University Hospital, LMU Munich, Munich, Germany
,
Bastian Sabel
5   Department of Radiology, University Hospital, LMU Munich, Munich, Germany
,
Michael Irlbeck
1   Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
,
Patrick Scheiermann
1   Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
› Author Affiliations
TRIAL REGISTRATION: Registration number (trial ID): NCT04891094, Trial registry: ClinicalTrials.gov (http://www.clinicaltrials.gov/), Type of Study: Prospective

Abstract

Purpose The aim of the study was to evaluate whether the quantification of B-lines via lung ultrasound after lung transplantation is feasible and correlates with the diagnosis of primary graft dysfunction.

Methods Following lung transplantation, patients underwent daily lung ultrasound on postoperative days 1–3. B-lines were quantified by an ultrasound score based on the number of single and confluent B-lines per intercostal space, using a four-region protocol. The ultrasound score was correlated with the diagnosis of primary graft dysfunction. Furthermore, correlation analyses and receiver operating characteristics analyses taking into account ultrasound score, chest radiographs, and PaO2/FiO2 ratio were performed.

Results A total of 32 patients (91 ultrasound measurements) were included, whereby 10 were diagnosed with primary graft dysfunction. The median B-line score was 5 [IQR: 4, 8]. There was a significant correlation between B-line score and the diagnosis of primary graft dysfunction (r = 0.59, p < 0.001). A significant correlation could also be seen between chest X-rays and primary graft dysfunction (r = 0.34, p = 0.008), but the B-line score showed superiority over chest X-rays with respect to diagnosing primary graft dysfunction in the receiver operating characteristics curves with an area under the curve value of 0.921 versus 0.708. There was a significant negative correlation between B-line score and PaO2/FiO2 ratio (r = –0.41, p < 0.001), but not between chest X-rays and PaO2/FiO2 ratio (r = –0.14, p = 0.279).

Conclusion The appearance of B-lines correlated well with primary graft dysfunction and outperformed chest radiographs.

Zusammenfassung

Ziel In der Studie wurde untersucht, ob die Quantifizierung von B-Linien mittels Lungenultraschall nach Lungentransplantation möglich ist und mit der Diagnose eines primären Transplantatversagens korreliert.

Material und Methode Bei Patienten nach Lungentransplantation wurde an den postoperativen Tagen 1–3-mal täglich ein Lungenultraschall durchgeführt. B-Linien wurden mittels Ultraschall-Score quantifiziert. Dieser wurde mit der Diagnose eines primären Transplantatversagens korreliert. Zusätzlich wurden Korrelations- und Receiver-Operating-Characteristics-Analysen unter Berücksichtigung von Ultraschall-Scores, Röntgen-Thorax-Bildern und PaO2/FiO2-Ratio durchgeführt.

Ergebnisse 32 Patienten (91 Ultraschalluntersuchungen) wurden eingeschlossen, von denen 10 ein primäres Transplantatversagen aufwiesen. Der mediane B-Linien-Score betrug 5 [IQR: 4, 8]. Es bestand eine signifikante Korrelation zwischen dem B-Linien-Score und der Diagnose eines primären Transplantatversagens (r = 0,59, p < 0,001) sowie zwischen Röntgenbildern und primärem Transplantatversagen (r = 0,34, p = 0,008). Der B-Linien-Score war bei der Diagnose des primären Transplantatversagens den Röntgenaufnahmen in den Receiver-Operating-Characteristics-Kurven mit einer Fläche unter der Kurve von 0,921 gegenüber 0,708 überlegen. Es bestand eine signifikante negative Korrelation zwischen dem B-Line-Score und dem PaO2/FiO2-Verhältnis (r = –0,41, p < 0,001), jedoch nicht zwischen Röntgenbildern und dem PaO2/FiO2-Verhältnis (r = –0,14, p = 0,279).

Schlussfolgerung Das Auftreten von B-Linien korrelierte gut mit der Diagnose des primären Transplantatversagens und zeigte sich gegenüber den Röntgenbildern überlegen.

Supporting information



Publication History

Received: 16 June 2022

Accepted after revision: 02 January 2023

Article published online:
28 February 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Snell GI. et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, part I: Definition and grading-A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36 (10) 1097-1103
  • 2 Diamond JM. et al. Report of the International Society for Heart and Lung Transplantation Working Group on Primary Lung Graft Dysfunction, part II: Epidemiology, risk factors, and outcomes-A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36 (10) 1104-1113
  • 3 Schwarz S. et al. Interobserver variability impairs radiologic grading of primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg 2019; 158 (03) 955-962 e1
  • 4 Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest 2015; 147 (06) 1659-1670
  • 5 Lichtenstein DA, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 2008; 134 (01) 117-125
  • 6 Mayr U. et al. B-Lines Scores Derived From Lung Ultrasound Provide Accurate Prediction of Extravascular Lung Water Index: An Observational Study in Critically Ill Patients. J Intensive Care Med 2022; 37 (01) 21-31
  • 7 Anile A. et al. A simplified lung ultrasound approach to detect increased extravascular lung water in critically ill patients. Crit Ultrasound J 2017; 9 (01) 13
  • 8 Enghard P. et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care 2015; 19: 36
  • 9 Jarman RD. et al. EFSUMB Clinical Practice Guidelines for Point-of-Care Ultrasound: Part One (Common Heart and Pulmonary Applications) SHORT VERSION. Ultraschall in Med 2022;
  • 10 Volpicelli G. et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012; 38 (04) 577-591
  • 11 Bedetti G. et al. Evaluation of ultrasound lung comets by hand-held echocardiography. Cardiovasc Ultrasound 2006; 4: 34
  • 12 Noble VE. et al. Evaluation of a thoracic ultrasound training module for the detection of pneumothorax and pulmonary edema by prehospital physician care providers. BMC Med Educ 2009; 9: 3
  • 13 Touw HR. et al. Lung ultrasound compared with chest X-ray in diagnosing postoperative pulmonary complications following cardiothoracic surgery: a prospective observational study. Anaesthesia 2018; 73 (08) 946-954
  • 14 De Molo C. et al. Interoperator Reliability of Lung Ultrasound during the COVID-19 Pandemic. Ultraschall in Med 2021;
  • 15 Breitkopf R, Treml B, Rajsic S. Lung Sonography in Critical Care Medicine. Diagnostics (Basel) 2022; 12 (06)
  • 16 Ford JW. et al. A Pilot Assessment of 3 Point-of-Care Strategies for Diagnosis of Perioperative Lung Pathology. Anesth Analg 2017; 124 (03) 734-742
  • 17 Lichtenstein D, Meziere GA. Diagnosis of cardiogenic pulmonary edema by sonography limited to the anterior lung. Chest 2009; 135 (03) 883-884
  • 18 Gray WH, McFadden PM. Commentary: Evaluation of primary graft dysfunction after lung transplantation-It is time to teach an old dog new tricks!. J Thorac Cardiovasc Surg 2019; 158 (03) 963-964
  • 19 Zanobetti M, Poggioni C, Pini R. Can chest ultrasonography replace standard chest radiography for evaluation of acute dyspnea in the ED?. Chest 2011; 139 (05) 1140-1147
  • 20 Lichtenstein D. et al. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 2004; 100 (01) 9-15
  • 21 Davidsen JR. et al. Lung Ultrasound in the Assessment of Pulmonary Complications After Lung Transplantation. Ultraschall Med 2020; 41 (02) 148-156
  • 22 Davidsen JR. et al. Lung Ultrasound to Phenotype Chronic Lung Allograft Dysfunction in Lung Transplant Recipients. A Prospective Observational Study. J Clin Med 2021; 10 (05) 1078
  • 23 Bensted K. et al. Lung Ultrasound After Transbronchial Biopsy for Pneumothorax Screening in Post-Lung Transplant Patients. J Bronchology Interv Pulmonol 2018; 25 (01) 42-47
  • 24 Weber U. et al. High altitude trekking after lung transplantation: a prospective study using lung ultrasound to detect comets tails for interstitial pulmonary edema in lung transplant recipients and healthy volunteers. Transpl Int 2018; 31 (11) 1245-1253
  • 25 Droneau S. et al. Use of Ultrasonography for Lung Transplant Recipients on Postoperative Care. J Ultrasound Med 2019; 38 (04) 1101-1108