Subscribe to RSS
DOI: 10.1055/a-2012-0097
NIS-Mediated Oxidation of Hydrazones: A Rapid Access to Fused Lactones and Tosylhydrazides
Financial support from the Sultanate of Oman Research Council (TRC) (grant no. BFP/RGP/EI/22/168) and the University of Nizwa is gratefully acknowledged.
Abstract
A tandem one-pot strategy for the synthesis of 4-iodo-3-aryl(alkyl)-1H-pyrano[4,3-b]quinolin-1-ones and (E)-3-(iodo(phenyl)methylene)isobenzofuran-1-(3H)-ones from 2-alkynylhydrazones has been developed through oxidation and regioselective 6-endo- and 5-exo-iodocyclization pathways by using NIS as an iodinating reagent. This approach tolerates a variety of in situ generated alkynyl-containing tosylhydrazones and affords the corresponding products in high yields. The protocol has also been applied for the synthesis of different derivatives in good to excellent yields.
Supporting Information
- Supporting information for this article is
available online at https://doi.org/10.1055/a-2012-0097.
- Supporting Information
- CIF File
Publication History
Received: 09 November 2022
Accepted after revision: 12 January 2023
Accepted Manuscript online:
12 January 2023
Article published online:
20 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
- 1b Zhu D.-Y, Fang L, Han H, Wang Y, Xia J.-B. Org. Lett. 2017; 19: 4259
- 1c Zhang Z, Ju T, Ye J.-H, Yu D.-G. Synlett 2017; 28: 741
- 1d Singh J, Nickel GA, Cai Y, Jones DD, Nelson TJ, Small JE, Castle SL. Org. Lett. 2021; 23: 3970
- 1e Yu W, Zhang X, Liu C, Zhang Y, Gu X, Liao J, Zhang Z, Wei W, Li G, Liang T. J. Org. Chem. 2022; 87: 12424
- 1f Kantak AA, Potavathri S, Barham RA, Romano KM, DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960
- 1g Kunchur HS, Balakrishna MS. Inorg. Chem. 2022; 61: 857
- 1h Devlin R, Jones DJ, McGlacken GP. Org. Lett. 2020; 22: 5223
- 1i Okuma K, Itoyama R, Sou A, Nagahoraa N, Shioj K. Chem. Commun. 2012; 48: 11145
- 1j Tang T.-M, Liu M, Wu H, Gou T, Hu X, Wang B.-Q, Hu P, Song F, Huang G. Org. Chem. Front. 2021; 8: 3867
- 2a Gore S, Baskaran S, König B. Org. Lett. 2012; 14: 4568
- 2b Dočekal V, Vopálenská A, Měrka P, Konečná K, Jand’ourek O, Pour M, Císařová I, Veselý J. J. Org. Chem. 2021; 86: 12623
- 2c Panther J, Müller TJ. J. Synthesis 2016; 48: 974
- 2d Park I.-K, Suh S.-E, Lim B.-Y, Cho C.-G. Org. Lett. 2009; 11: 5454
- 2e Dai X.-J, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5344
- 2f Cranwell PB, Russell AT, Smith CD. Synlett 2016; 27: 131
- 2g Ojha DP, Prabhu KR. Org. Lett. 2015; 17: 18
- 3a Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
- 3b Galloway WR. J. D, Llobet AI, Spring DR. Nat. Commun. 2010; 1: 80
- 3c Schreiber SL. Nature 2009; 457: 153
- 3d Shi Z, Wang L, Yang Z, Jie L, Liu X, Cui X. J. Org. Chem. 2020; 85: 3029
- 3e Wu P, Zhang Y, Cheng Y. J. Org. Chem. 2022; 87: 2779
- 3f Qiu G, Wu J. Chem. Rec. 2016; 16: 19
- 3g Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
- 3h Enders DC, Grondal MR, Huttl M. Angew. Chem. Int. Ed. 2007; 46: 1570
- 3i Tietze LF, Dufert A, Lotz F, Solter L, Oum K, Lenzer T, Beck T, Herbst-Irmer R. J. Am. Chem. Soc. 2009; 131: 17879
- 4a Ding Q, Chen Z, Yu X, Peng Y, Wu J. Tetrahedron Lett. 2009; 50: 340
- 4b Yao H.-F, Wang D.-L, Li F.-H, Wu B, Cai Z.-J, Ji S.-J. Org. Biomol. Chem. 2020; 18: 7577
- 4c Jiang L, Yu X, Fang B, Wu J. Org. Biomol. Chem. 2012; 10: 8102
- 4d Li S, Luo Y, Wu J. Org. Lett. 2011; 13: 4312
- 4e Özer MS, Menges N, Keskin S, Şahin E, Balci M. Org. Lett. 2016; 18: 408
- 5 Chen Z, Ding Q, Yu X, Wu J. Adv. Synth. Catal. 2009; 351: 1692
- 6a Verma AK, Rustagi V, Aggarwal T, Singh AP. J. Org. Chem. 2010; 75: 7691
- 6b Takallou A, Al-Shidhani S, Anwar MU, Al-Harrasi A. Synthesis 2023; 55: 489
- 6c Reddy MB, Peri R, Bhagavathiachari M, Anandhan R. Org. Biomol. Chem. 2021; 19: 6792
- 6d Wang R.-X, Yuan S.-T, Liu J.-B, Wu J, Qiu G. Org. Biomol. Chem. 2018; 16: 4501
- 6e Verma AK, Aggarwal T, Rustagia V, Larock RC. Chem. Commun. 2010; 46: 4064
- 6f Zhu Y, Shen Z. Adv. Synth. Catal. 2017; 359: 3515
- 6g Biagetti M, Bellina F, Carpita A, Stabile P, Rossi R. Tetrahedron 2002; 58: 5023
- 6h Wang Y.-H, Liu J.-B, Ouyang B, Zhou H, Qiu G. Tetrahedron 2018; 74: 4429
- 7a Ye S, Wang H, Wu J. Eur. J. Org. Chem. 2010; 6436
- 7b Xiao Q, Ye S, Wu J. Org. Lett. 2012; 14: 3430
- 7c Nikbakht A, Balalaie S, Breit B. Org. Lett. 2019; 21: 7645
- 7d Ren H, Luo Y, Ye S, Wu J. Org. Lett. 2011; 13: 2552
- 7e Ye S, Gao K, Wu J. Adv. Synth. Catal. 2010; 352: 1746
- 7f Araujo DR, Goulart HA, Barcellos AM, Cargnelutti R, Lenardão EJ, Perin G. J. Org. Chem. 2020; 86: 1721
- 7g Han D, He Q, Fan R. Angew. Chem. Int. Ed. 2015; 54: 14013
- 7h He L, Nie H, Qiu G, Gao Y, Wu J. Org. Biomol. Chem. 2014; 12: 9045
- 8 4-Iodo-3-aryl(alkyl)-1H-pyrano[4,3-b]quinolin-1-ones: A mixture of 2-alkynylarylaldehydes (1.0 mmol, 1.0 equiv) and TsNHNH2 (1.0 mmol, 1.0 equiv) in DMF (2 mL) was stirred at 75 °C for 20 min. The mixture was then cooled to –5 °C in an ice/salt bath. Subsequently, NIS (2.2 mmol, 2.20 equiv) was added in portions over 5 min, and the mixture was slowly warmed to room temperature. The progress of reaction was monitored by TLC. After completion of the reaction, a solution of sodium thiosulfate was added to the reaction mixture to neutralize excess NIS. Then, H2O (5 mL) was added, the resulting mixture was extracted with ethyl acetate (3 × 5 mL), and the organic layer was washed with brine, dried over MgSO4 and concentrated in vacuo. This was followed by purification over silica gel, which provided the corresponding product. 4-Iodo-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2a): Yellow oil; yield: 327 mg (82%). IR (KBr): 3150, 1711, 1526, 1118, 756 cm–1. 1H NMR (600 MHz, CDCl3): δ = 9.16 (s, 1 H), 8.32–8.30 (m, 1 H), 8.08–8.06 (m, 1 H), 7.97–7.90 (m, 4 H), 7.77–7.73 (m, 2 H), 7.70–7.68 (m, 1 H). 13C NMR (151 MHz, CDCl3): δ = 161.3, 156.0, 151.7, 150.1, 140.9, 133.8, 130.5, 129.7, 129.1, 128.1, 127.6, 125.2, 125.1, 114.2, 82.8. HRMS (ESI): m/z calcd for C18H10INO2 [M + H]+: 399.9834; found: 399.9831.