Klin Monbl Augenheilkd 2023; 240(04): 608-612
DOI: 10.1055/a-2026-0924
Klinische Studie

Analysis of Blood Flow in the Macula and Optic Nerve Head in Healthy Young Volunteers Using Laser Speckle Flowgraphy

Analyse des Blutflusses der Macula und des Sehnervenkopfes in jungen gesunden Probanden mittels Laser Speckle Flowgraphy
Anahita Bajka
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Nastasia Foa
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Sophia Sidhu
2   Faculty of Medicine, University of San Diego, San Diego, California, United States (Ringgold ID: RIN7119)
,
Magdalena Rejdak
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Sadiq Said
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Maximilian Robert Justus Wiest
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Timothy Hamann
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Daniel Muth
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Frank Blaser
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
,
Sandrine Anne Zweifel
1   Department of Ophthalmology, University Hospital of Zurich, University of Zurich, Switzerland
› Author Affiliations

Abstract

Purpose To assess optic nerve head (ONH) and macular blood flow in young healthy volunteers using laser speckle flowgraphy (LSFG).

Methods This is a prospective single-center study conducted at the Department of Ophthalmology, University Hospital Zurich from May to November 2021. Young, healthy men aged ≥ 18 years without ocular or systemic diseases were included. A corrected visual acuity (VA) of 0.0 logMAR or better in both eyes and an intraocular pressure (IOP) of 21 mmHg or lower were required for inclusion. Subjects exceeding a spherical equivalent (SE) of ± 6 diopters (dpt) were excluded. Blood flow in the macula and the ONH was recorded using the Nidek LSFG RetFlow device (Nidek Company, Ltd., Hirioshi-cho, Japan). Laser power was set to 0.5 Millivolts (mV). Mean blur rate (MBR) was recorded as a parameter for blood flow. MBR is a calculated parameter that represents relative blood flow velocity correlated with the real anatomical blood flow rate. Colored heat maps of the recorded retinal area were generated automatically by the RetFlow device.

Results Final analyses included 83 eyes of 43 male volunteers. Mean age was 21.9 years (SD ± 1.5, range: 20 to 29). Mean corrected VA was − 0.1 logMAR (SD ± 0.05, range: − 0.2 to 0.0), mean IOP was 15.4 mmHg (SD ± 2.5, range: 8.5 to 18.5), and mean SE was − 0.3 dpt (SD ± 1.2, range: − 5.0 to 1.2). Mean ONH MBR was 37.44 (SD ± 7.9, range: 22.5 to 53.5) and mean macular MBR was 27.8 (SD ± 9.7, range: 6.4 to 57.7). Pearsonʼs Test showed a strong correlation between macular and papillary blood flow (p < 0.05, coefficient: 0.647).

Conclusion This study provides both ONH and macular blood flow data in a healthy young male population, showing a strong correlation between ONH and macular blood flow in the examined eyes. Further investigations are required to assess the validity of MBR as a parameter for the combined evaluation of retinal blood flow at the macula and ONH in healthy volunteers and patients with various diseases.

Zusammenfassung

Ziel Untersuchung und Vergleich des papillären und makulären Blutfluss in jungen, gesunden Probanden mittels Laser Speckle Flowgraphy (LSFG).

Methodenn Diese prospektive Single-Center-Studie wurde an der Augenklinik des Universitätsspitals Zürich, Schweiz, von Mai bis November 2021 durchgeführt. Junge, gesunde Männer ohne okuläre oder systemische Vorerkrankungen mit einem Alter von ≥ 18 Jahren wurden eingeschlossen. Die Teilnehmer mussten einen Visus von 0.0 logMAR oder besser an beiden Augen und einen Augendruck (IOD) von 8 – 21 mmHg aufweisen. Teilnehmer mit einem sphärischen Äquivalent (SE) außerhalb ± 6 Dioptrien (dpt) wurden ausgeschlossen. Blutfluss in der makulären und papillären Region wurde mittels des LSFG-RetFlow-Geräts von Nidek aufgenommen (Nidek Company, Ltd., Hirioshi-cho, Japan). Die Laserleistung (Power) betrug bei den Aufnahmen 0.5 Millivolts (mV). Die Mean Blur Rate (MBR) wurde als Parameter des Blutflusses gemessen. Die MBR ist ein berechneter Parameter, welcher die relative Blutflussgeschwindigkeit mit dem anatomischen Blutfluss korreliert. Heat Mapʼs wurden automatisch aus den Aufnahmen des RetFlow-Geräts erstellt.

Resultate In der finalen Analyse konnten 83 Augen von 43 männlichen Probanden eingeschlossen werden. Das mittlere Alter betrug 21,9 Jahre (SD ± 1,5, Spanne: 20 bis 29). Der mittlerer korrigierte Visus betrug logMAR (± 0,05, Spanne: − 0,2 bis 0,0), der mittlere IOD betrug 15,4 mmHg (SD ± 2,5, Spanne: 8,5 bis 18,5), mittleres SE war − 0,3 dpt (± 1,2, Spanne: − 5,0 bis 1,2). Die mittlere papilläre MBR betrug 37,44 (± 7,9, Spanne: 22,5 bis 53,5) und die mittlere makuläre MBR betrug 27,8 (± 9,7, Spanne: 6,4 bis 57,7). Der Pearsonʼs Test zeigte eine starke Korrelation zwischen makulärem und papillärem Blutfluss (p < 0,05, Koeffizient: 0,647).

Schlussfolgerung Diese Studie gibt Daten über den papillären sowie makulären Blutfluss in einer Kohorte junger, gesunder Männer an, wobei papillärer und makulärer Blutfluss in den untersuchten Augen stark korrelieren. Weitere Studien zur Untersuchung beider Parameter werden benötigt, um die kombinierte Analyse der Parameter durchführen zu können.

Conclusion Box

Already known:

  • Retinal and choroidal blood flow can be altered in patients with retinal and systemic vascular diseases.

Newly described:

  • Optic Nerve Head (ONH) and macular retinal blood flow strongly correlated in this cohort of young, healthy, male probands.



Publication History

Received: 15 October 2022

Accepted: 29 January 2023

Article published online:
25 April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Pappelis K, Choritz L, Jansonius NM. Microcirculatory model predicts blood flow and autoregulation range in the human retina: in vivo investigation with laser speckle flowgraphy. Am J Physiol Heart Circ Physiol 2020; 319: H1253-H1273
  • 2 Mursch-Edlmayr AS, Luft N, Podkowinski D. et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep 2018; 8: 5343
  • 3 Kohmoto R, Sugiyama T, Ueki M. et al. Correlation between laser speckle flowgraphy and optical coherence tomography angiography measurements in normal and glaucomatous eyes. Clin Ophthalmol 2019; 13: 1799-1805
  • 4 Cheng RW, Yusof F, Tsui E. et al. Relationship between retinal blood flow and arterial oxygen. J Physiol 2016; 594: 625-640
  • 5 Harris NR, Leskova W, Kaur G. et al. Blood flow distribution and the endothelial surface layer in the diabetic retina. Biorheology 2019; 56: 181-189
  • 6 Hanaguri J, Yokota H, Watanabe M. et al. Retinal blood flow dysregulation precedes neural retinal dysfunction in type 2 diabetic mice. Sci Rep 2021; 11: 18401
  • 7 Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 2012; 31: 377-406
  • 8 Witkowska KJ, Bata AM, Calzetti G. et al. Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy. PLoS One 2017; 12: e0184772
  • 9 Calzetti G, Fondi K, Bata AM. et al. Assessment of choroidal blood flow using laser speckle flowgraphy. Br J Ophthalmol 2018; 102: 1679-1683
  • 10 Tamaki Y, Araie M, Kawamoto E. et al. Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res 1995; 60: 373-383
  • 11 Aizawa N, Kunikata H, Nitta F. et al. Age- and Sex-Dependency of Laser Speckle Flowgraphy Measurements of Optic Nerve Vessel Microcirculation. PLoS One 2016; 11: e0148812
  • 12 Iwase T, Yamamoto K, Kobayashi M. et al. What ocular and systemic variables affect choroidal circulation in healthy eyes. Medicine (Baltimore) 2016; 95: e5102
  • 13 Kromer R, Glusa P, Framme C. et al. Optical coherence tomography angiography analysis of macular flow density in glaucoma. Acta Ophthalmol 2019; 97: e199-e206
  • 14 Park JH, Woo SJ, Ha YJ. et al. Macular capillary blood flow in patients with diffuse diabetic macular edema without vitreomacular traction. Ophthalmic Res 2009; 42: 73-80
  • 15 Burgansky-Eliash Z, Barash H, Nelson D. et al. Retinal blood flow velocity in patients with age-related macular degeneration. Curr Eye Res 2014; 39: 304-311
  • 16 Zhao S, He J, Qiu M. et al. Changes of blood flow in macular zone of patients with diabetic retinopathy at different stages evaluated by optical coherence tomography angiography. J Fr Ophtalmol 2022; 45: 728-734
  • 17 Swiatczak B, Schaeffel F, Calzetti G. Imposed positive defocus changes choroidal blood flow in young human subjects. Graefes Arch Clin Exp Ophthalmol 2023; 261: 115-125
  • 18 Wei X, Balne PK, Meissner KE. et al. Assessment of flow dynamics in retinal and choroidal microcirculation. Surv Ophthalmol 2018; 63: 646-664
  • 19 Groh MJ, Michelson G, Langhans MJ. et al. Influence of age on retinal and optic nerve head blood circulation. Ophthalmology 1996; 103: 529-534
  • 20 Luft N, Wozniak PA, Aschinger GC. et al. Ocular Blood Flow Measurements in Healthy White Subjects Using Laser Speckle Flowgraphy. PLoS One 2016; 11: e0168190
  • 21 Marino MJ, Gehlbach PL, Rege A. et al. Current and novel multi-imaging modalities to assess retinal oxygenation and blood flow. Eye (Lond) Nov 2021; 35: 2962-2972
  • 22 Wang L, Burgoyne CF, Cull G. et al. Static blood flow autoregulation in the optic nerve head in normal and experimental glaucoma. Invest Ophthalmol Vis Sci 2014; 55: 873-880
  • 23 Iwase C, Iwase T, Tomita R. et al. Changes in pulse waveforms in response to intraocular pressure elevation determined by laser speckle flowgraphy in healthy subjects. BMC Ophthalmol 2021; 21: 303