Subscribe to RSS
DOI: 10.1055/a-2033-8632
Taming Challenging Radical-Based Convergent Paired Electrolysis with Dual-Transition-Metal Catalysis
We thank the National Natural Science Foundation of China (grant no. 22071252), the Postdoctoral Research Foundation of China (YJ20220197), and Chinese Academy of Sciences for their financial support.
Abstract
The past few years have witnessed a renaissance of electrochemistry in organic synthesis. This green technology replaces chemical oxidants or reductants with inexpensive electricity. Paired electrolysis refers to processes in which reactions at both electrodes are desirable. These maximize the energy economy by avoiding the waste of electrical power on sacrificial reactions. Convergent paired electrolysis is a special case in which reactive intermediates are generated simultaneously at both electrodes and then coupled. However, radical-based reactions of this type remain underexploited. The incorporation of transition-metal catalysis could be beneficial by modulating the formation and utilization of highly reactive radical species. In this article, we introduce our most recent successful implementations of this strategic design.
1 Introduction
2 Ce/Ni Dual-Catalytic Decarboxylative Arylation
3 Fe/Ni Dual-Catalytic Esterification of Aryl Halides
4 Conclusion.
Key words
convergent paired electrolysis - electrochemistry - electrocatalysis - radical reaction - transition-metal catalysisPublication History
Received: 02 February 2023
Accepted after revision: 13 February 2023
Accepted Manuscript online:
13 February 2023
Article published online:
07 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
- 2a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 2b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 2c Moeller KD. Chem. Rev. 2018; 118: 4817
- 2d Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 2e Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
- 2f Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
- 2g Elsherbini M, Wirth T. Acc. Chem. Res. 2019; 52: 3287
- 2h Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res. 2020; 53: 300
- 2i Yuan Y, Yang J, Lei A. Chem. Soc. Rev. 2021; 50: 10058
- 2j Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
- 2k Ma C, Fang P, Liu D, Jiao K.-J, Gao P.-S, Qiu H, Mei T.-S. Chem. Sci. 2021; 12: 12866
- 2l Xu C, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
- 3a Zhang W, Hong N, Song L, Fu N. Chem. Rec. 2021; 21: 2574
- 3b Marken F, Cresswell AJ, Bull SD. Chem. Rec. 2021; 21: 2585
- 3c Sbei N, Hardwick T, Ahmed N. ACS Sustainable Chem. Eng. 2021; 9: 6148
- 4 For an example of parallel paired electrosynthesis in an industrial setting, see: Pütter H, Hannebaum H. US 6063256 2000
- 5 For a recent example, see: Chadderdon XH, Chadderdon DJ, Pfennig T, Shanks BH, Li W. Green Chem. 2019; 21: 6210
- 6 For a recent example, see: Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
- 7 Zhang S, Findlater M. Chem. Eur. J. 2022; 28: e202201152
- 8a Ma Y, Yao X, Zhang L, Ni P, Cheng R, Ye J. Angew. Chem. Int. Ed. 2019; 58: 16548
- 8b Ma Y, Hong J, Yao X, Liu C, Zhang L, Fu Y, Sun M, Cheng R, Li Z, Ye J. Org. Lett. 2021; 23: 9387
- 8c Zhang L, Hu X. Chem. Sci. 2020; 11: 10786
- 8d Wang Y, Deng L, Wang X, Wu Z, Wang Y, Pan Y. ACS Catal. 2019; 9: 1630
- 8e Zou Z, Li H, Huang M, Zhang W, Zhi S, Wang Y, Pan Y. Org. Lett. 2021; 23: 8252
- 8f Walker BR, Sevov CS. ACS Catal. 2019; 9: 7197
- 8g Yu M, Wang H, Gao Y, Bu F, Cong H, Lei A. Cell Rep. Phys. Sci. 2021; 2: 100476
- 8h Luo J, Hu B, Wu W, Hu M, Liu TL. Angew. Chem. Int. Ed. 2021; 60: 6107
- 8i Daili F, Ouarti A, Pinaud M, Kribii I, Sengmany S, Le Gall E, Léonel E. Eur. J. Org. Chem. 2020; 3452
- 8j Bai Y, Liu N, Wang S, Wang S, Ning S, Shi L, Cui L, Zhang Z, Xiang J. Org. Lett. 2019; 21: 6835
- 8k Wang Z.-H, Wei L, Jiao K.-J, Ma C, Mei T.-S. Chem. Commun. 2022; 58: 8202
- 8l Chen Y.-J, Deng W.-H, Guo J.-D, Ci R.-N, Zhou C, Chen B, Li X.-B, Guo X.-N, Liao R.-Z, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2022; 144: 17261
- 9 Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI, Buchwald SL, Jensen KF. Science 2020; 368: 1352
- 10a Song L, Fu N. In Comprehensive Organometallic Chemistry IV, Vol. 13, Chap. 13.08. Parkin G, Meyer K, O’Hare D. Elsevier; Amsterdam: 2022: 339
- 10b Lu J, Wang Y, McCallum T, Fu N. iScience 2020; 23: 101796
- 10c Levin MD, Kim S, Toste FD. ACS Cent. Sci. 2016; 2: 293
- 10d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 10e Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 10f Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 11 Yang K, Lu J, Li L, Luo S, Fu N. Chem. Eur. J. 2022; 28: e202202370
- 12a Tsurugi H, Mashima K. J. Am. Chem. Soc. 2021; 143: 7879
- 12b Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
- 12c Gavelle S, Innocent M, Aubineau T, Guérinot A. Adv. Synth. Catal. 2022; 364: 4189. For recent examples of the use of Ce as a ligandto-metal charge-transfer catalyst, see:
- 12d Chen Y, Wang X, He X, An Q, Zuo Z. J. Am. Chem. Soc. 2021; 143: 4896
- 12e Yatham VR, Bellotti P, König B. Chem. Commun. 2019; 55: 3489
- 12f Shirase S, Tamaki S, Shinohara K, Hirosawa K, Tsurugi H, Satoh T, Mashima K. J. Am. Chem. Soc. 2020; 142: 5668
- 12g Lai X.-L, Shu X.-M, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 10626
- 12h Wang Y, Li L, Fu N. ACS Catal. 2022; 12: 10661
- 12i Lai X.-L, Chen M, Wang Y, Song J, Xu H.-C. J. Am. Chem. Soc. 2022; 144: 20201
- 12j Yuan Y, Yang J, Zhang J. Chem. Sci. 2023; 14: 705
- 12k Yang K, Wang Y, Luo S, Fu N. Chem. Eur. J. 2023; in press; DOI: DOI: 10.1002/chem.202203962.
- 13a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. Science 2014; 345: 437
- 13b Prieto Kullmer CN, Kautzky JA, Krska SW, Nowak T, Dreher SD, MacMillan DW. C. Science 2022; 376: 532
- 14 Ce(IV) carboxylates can be stored for days at room temperature when kept in darkness, see: Sheldon RA, Kochi JK. J. Am. Chem. Soc. 1968; 90: 6688
- 15 A relatively stable aryl Ni(II) complex was synthesized and isolated (see Figure 4)
- 16 Xue P, Li L, Fu N. Org. Lett. 2022; 24: 7595
- 17a Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey TJ, Anderson SL, Neurock M, Minteer SD, Baran PS. Science 2019; 363: 838
- 17b Truesdell BL, Hamby TB, Sevov CS. J. Am. Chem. Soc. 2020; 142: 5884
- 17c Walker BR, Manabe S, Brusoe AT, Sevov CS. J. Am. Chem. Soc. 2021; 143: 6257
For selected recent reviews, see:
For selected recent examples, see:
For recent reviews and perspectives on ligand-to-metal charge transfer in organic synthesis, see: