Subscribe to RSS
DOI: 10.1055/a-2060-3288
Understanding and Describing London Dispersion Effects in Transition-Metal-Catalyzed C–H Activations
Generous support from the European Research Council (ERC Advanced Grant No.101021358), the Deutsche Forschungsgemeinschaft (DFG, Gottfried Wilhelm Leibniz Prize (L.A.)), the China Scholarship Council (CSC, fellowship to B.Y.) and the Deutsche Forschungsgemeinschaft (DFG, SPP 1807) on ‘Control of London Dispersion Interactions in Molecular Chemistry’ are gratefully acknowledged.
Abstract
Transition-metal-catalyzed C–H activation has emerged as a powerful strategy for molecular synthesis with unique levels of resource economy. Weak secondary dispersion interactions were found to play an essential role in these transformations in terms of kinetic efficacy and selectivity. This Account summarizes our group’s recent progress in the rationalization and quantification of London dispersion effects within the transition-metal-catalyzed C–H activation.
1 Introduction
2 Annulation Reactions
3 Alkylation Reactions
4 Arylation Reactions
5 Olefination Reactions
6 Oxygenation Reactions
7 Conclusion
Key words
C–H activation - London dispersion effect - DFT calculations - transition metals - catalysisPublication History
Received: 27 February 2023
Accepted after revision: 22 March 2023
Accepted Manuscript online:
22 March 2023
Article published online:
09 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Gorbachev V, Tsybizova A, Miloglyadova L, Chen P. J. Am. Chem. Soc. 2022; 144: 9007
- 2 Pace CN, Scholtz JM, Grimsley GR. FEBS Lett. 2014; 588: 2177
- 3 Hosseini MW. Chem. Commun. 2005; 5825
- 4 Parveen S, Rana S, Fangueiro R. J. Nanomater. 2013; 710175
- 5a Gehlhaar A, Schiavo E, Wölper C, Schulte Y, Auer AA, Schulz S. Dalton Trans. 2022; 51: 5016
- 5b Schiavo E, Bhattacharyya K, Mehring M. Chem. Eur. J. 2021; 27: 14520
- 5c Fritzsche A.-M, Scholz S, Krasowska M, Bhattacharyya K, Toma AM, Silvestru C, Korb M, Rüffer T, Lang H, Auer AA, Mehring M. Phys. Chem. Chem. Phys. 2020; 22: 10189
- 5d Krasowska M, Fritzsche A.-M, Mehring M, Auer AA. ChemPhysChem 2019; 20: 2539
- 5e Preda A.-M, Krasowska ME, Wrobel L, Kitschke P, Andrews PC, MacLellan JG, Mertens L, Korb M, Rüffer T, Lang H, Auer AA, Mehring M. Beilstein J. Org. Chem. 2018; 14: 2125
- 5f Bistoni G, Auer AA, Neese F. Chem. Eur. J. 2017; 23: 865
- 6 Berkessel A, Adrio JA. J. Am. Chem. Soc. 2006; 128: 13412
- 7 Biedermann F, Nau WM, Schneider HJ. Angew. Chem. Int. Ed. 2014; 53: 11158
- 8 Verevkin S, Kondratev S, Zaitsau D, Zherikova K, Ludwig R. J. Mol. Liq. 2021; 343: 117547
- 9a Rösel S, Schreiner PR. Isr. J. Chem. 2022; 62: e202200002
- 9b Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
- 10 Knowles RR, Jacobsen EN. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20678
- 11a Berkessel A, Adrio JA, Hüttenhain D, Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
- 11b Biedermann F, Nau WM. Angew. Chem. Int. Ed. 2014; 53: 5694
- 12 Thomas AA, Speck K, Kevlishvili I, Lu Z, Liu P, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 13976
- 13a Lu Q, Neese F, Bistoni G. Phys. Chem. Chem. Phys. 2019; 21: 11569
- 13b Lu Q, Neese F, Bistoni G. Angew. Chem. Int. Ed. 2018; 57: 4760
- 13c Jerhaoui S, Djukic J.-P, Wencel-Delord J, Colobert F. ACS Catal. 2019; 9: 2532
- 13d Wu F, Deraedt C, Cornaton Y, Contreras-Garcia J, Boucher M, Karmazin L, Bailly C, Djukic J.-P. Organometallics 2020; 39: 2609
- 14 Detmar E, Mueller V, Zell D, Ackermann L, Breugst M. Beilstein J. Org. Chem. 2018; 14: 1537
- 15a Li B, Xu H, Dang Y, Houk KN. J. Am. Chem. Soc. 2022; 144: 1971
- 15b Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
- 16 Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
- 18a Rummel L, Domanski MH. J, Hausmann H, Becker J, Schreiner PR. Angew. Chem. Int. Ed. 2022; 134: e202204393
- 18b Solel E, Ruth M, Schreiner PR. J. Am. Chem. Soc. 2021; 143: 20837
- 18c Maué D, Strebert PH, Bernhard D, Rösel S, Schreiner PR, Gerhards M. Angew. Chem. Int. Ed. 2021; 60: 11305
- 18d Rösel S, Becker J, Allen WD, Schreiner PR. J. Am. Chem. Soc. 2018; 140: 14421
- 18e Fokin AA, Zhuk TS, Blomeyer S, Perez C, Chernish LV, Pashenko AE, Antony J, Vishnevskiy YV, Berger RJ. F, Grimme S, Logemann C, Schnell M, Mitzel NW, Schreiner PR. J. Am. Chem. Soc. 2017; 139: 16696
- 18f Rösel S, Quanz H, Logemann C, Becker J, Mossou E, Delgado LC, Caldeweyher E, Grimme S, Schreiner PR. J. Am. Chem. Soc. 2017; 139: 7428
- 18g Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
- 19 Löffler S, Wuttke A, Zhang B, Holstein JJ, Mata RA, Clever GH. Chem. Commun. 2017; 53: 11933
- 20 Grimme S, Hansen A, Brandenburg JG, Bannwarth C. Chem. Rev. 2016; 116: 5105
- 21a Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primer 2021; 1: 43
- 21b Guillemard L, Kaplaneris N, Ackermann L, Johansson M. Nat. Rev. Chem. 2021; 5: 522
- 21c Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
- 21d Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
- 21e He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 21f Zheng Q.-Z, Jiao N. Chem. Soc. Rev. 2016; 45: 4590
- 21g Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 21h Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 21i Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 21j Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 21k Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 21l McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 21m Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 22a Ikawa T, Yamamoto Y, Heguri A, Fukumoto Y, Murakami T, Takagi A, Masuda Y, Yahata K, Aoyama H, Shigeta Y, Tokiwa H, Akai S. J. Am. Chem. Soc. 2021; 143: 10853
- 22b Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu J. J. Am. Chem. Soc. 2020; 142: 10571
- 22c Geiger T, Haupt A, Maichle-Mössmer C, Schrenk C, Schnepf A, Bettinger HF. J. Org. Chem. 2019; 84: 10120
- 22d Pandit S, Maiti S, Maiti D. Org. Chem. Front. 2021; 8: 4349
- 22e Bisht R, Hoque ME, Chattopadhyay B. Angew. Chem. Int. Ed. 2018; 57: 15762
- 22f Hoque ME, Bisht R, Haldar C, Chattopadhyay B. J. Am. Chem. Soc. 2017; 139: 7745
- 22g Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712
- 23a Shen H, Liu T, Cheng D, Yi X, Wang Z, Liu L, Song D, Ling F, Zhong W. J. Org. Chem. 2020; 85: 13735
- 23b Xu F, Li YJ, Huang C, Xu HC. ACS Catal. 2018; 8: 3820
- 24a Tian C, Dhawa U, Scheremetjew A, Ackermann L. ACS Catal. 2019; 9: 7690
- 24b Qiu Y, Stangier M, Meyer TH, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14179
- 24c Zeng L, Li H, Tang S, Gao X, Deng Y, Zhang G, Pao C.-W, Chen J.-L, Lee J.-F, Lei A. ACS Catal. 2018; 8: 5448
- 24d Qiu Y, Kong W.-J, Struwe J, Sauermann N, Rogge T, Scheremetjew A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5828
- 25a Yang L, Steinbock R, Scheremetjew A, Kuniyil R, Finger LH, Messinis AM, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 11130
- 25b Yang Q.-L, Xing Y.-K, Wang X.-Y, Ma H.-X, Weng X.-J, Yang X, Guo H.-M, Mei T.-S. J. Am. Chem. Soc. 2019; 141: 18970
- 25c Kong W.-J, Finger LH, Messinis AM, Kuniyil R, Oliveira JC. A, Ackermann L. J. Am. Chem. Soc. 2019; 141: 17198
- 25d Mo J, Müller T, Oliveira JC. A, Demeshko S, Meyer F, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12874
- 25e Luo M.-J, Hu M, Song R.-J, He D.-L, Li J.-H. Chem. Commun. 2019; 55: 1124
- 25f Mei R, Sauermann N, Oliveira JC. A, Ackermann L. J. Am. Chem. Soc. 2018; 140: 7913
- 25g Mei R, Koeller J, Ackermann L. Chem. Commun. 2018; 54: 12879
- 25h Tang S, Wang D, Liu Y, Zeng L, Lei A. Nat. Commun. 2018; 9: 798
- 25i Huang P, Wang P, Wang S, Tang S, Lei A. Green Chem. 2018; 20: 4870
- 25j Meyer TH, Chandra Sau S, Ang NW. J, Ackermann L. ACS Catal. 2018; 8: 9140
- 26a Yuan Y, Zhu J, Yang Z, Ni S, Huang Q, Ackermann L. CCS Chem. 2022; 4: 1858
- 26b Wang Y, Oliveira JC. A, Lin Z, Ackermann L. Angew. Chem. Int. Ed. 2021; 60: 6419
- 27a Hu P, Kong L, Wang F, Zhu X, Li X. Angew. Chem. Int. Ed. 2021; 60: 2
- 27b Capdevila L, Meyer TH, Roldán-Gómez S, Luis JM, Ackermann L, Ribas X. ACS Catal. 2019; 9: 11074
- 27c Kong W.-J, Finger LH, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 6342
- 28a Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
- 28b Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
- 29a Kaplaneris N, Ackermann L. Beilstein J. Org. Chem. 2022; 18: 86
- 29b Gandeepan P, Finger LH. T, Meyer H, Ackermann L. Chem. Soc. Rev. 2020; 49: 4254
- 29c Ackermann L. Acc. Chem. Res. 2020; 53: 84
- 29d Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
- 29e Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 30 Oliveira JC. A, Dhawa U, Ackermann L. ACS Catal. 2021; 11: 1505
- 31 Liu W, Cera G, Oliveira JC. A, Shen Z, Ackermann L. Chem. Eur. J. 2017; 23: 11524
- 32a Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 32b Borie C, Ackermann L, Nechab M. Chem. Soc. Rev. 2016; 45: 1368
- 33 Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
- 34 Dhawa U, Connon R, Oliveira JC. A, Steinbock R, Ackermann L. Org. Lett. 2021; 23: 2760
- 35a Choi I, Messinis AM, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12534
- 35b Dias GG, do Nascimento TA, de Almeida AK. A, Bombaça AC. S, Menna-Barreto RF. S, Jacob C, Warratz S, da Silva Júnior EN, Ackermann L. Eur. J. Org. Chem. 2019; 2344
- 35c Bechtoldt A, Baumert ME, Vaccaro L, Ackermann L. Green Chem. 2018; 20: 398
- 35d Nareddy P, Jordan F, Szostak M. ACS Catal. 2017; 7: 5721
- 35e Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
- 35f Ma W, Gandeepan P, Li J, Ackermann L. Org. Chem. Front. 2017; 4: 1435
- 35g Zha G.-F, Qin H.-L, Kantchev EA. B. RSC Adv. 2016; 6: 30875
- 36a Sadowski B, Yuan B, Lin Z, Ackermann L. Angew. Chem. Int. Ed. 2022; 61: e202117188
- 36b Zhang Y, Struwe J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 15076
- 36c Qiu Y, Scheremetjew A, Ackermann L. J. Am. Chem. Soc. 2019; 141: 2731
- 36d Qiu Y, Kong W.-J, Struwe J, Sauermann N, Rogge T, Scheremetjew A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5828
- 36e Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
- 36f Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 36g Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
- 36h Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
- 36i Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
- 37a Qiu Y, Stangier M, Meyer TH, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14179
- 37b Pan S, Shibata T. ACS Catal. 2013; 3: 704
- 37c Suzuki T. Chem. Rev. 2011; 111: 1825
- 37d Choi J, Goldman AS. Top. Organomet. Chem. 2011; 34: 139
- 38a Choy PY, Wong SM, Kapdi A, Kwong FY. Org. Chem. Front. 2018; 5: 288
- 38b Baudoin O. Acc. Chem. Res. 2017; 50: 1114
- 38c Ferlin F, Santoro S, Ackermann L, Vaccaro L. Green Chem. 2017; 19: 2510
- 38d Ma W, Dong H, Wang D, Ackermann L. Adv. Synth. Catal. 2017; 359: 966
- 38e Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
- 38f Ye J, Lautens M. Nat. Chem. 2015; 7: 863
- 38g Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 38h Sun C.-L, Li B.-J, Shi Z.-J. Chem. Commun. 2010; 46: 677
- 38i Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 38j Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
- 39 Meyer TH, Liu W, Feldt M, Wuttke A, Mata RA. Ackermann L. Chem. Eur. J. 2017; 23: 5443
- 40 Dhawa U, Tian C, Wdowik T, Oliveira JC. A, Hao J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 13451
- 41 Jacob N, Zaid Y, Oliveira JC. A, Ackermann L, Wencel-Delord J. J. Am. Chem. Soc. 2022; 144: 798
- 42a Zhu C, Oliveira JC. A, Shen Z, Huang H, Ackermann L. ACS Catal. 2018; 8: 4402
- 42b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 42c Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
- 43a Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J.-P, Beratan DN, Yang W. J. Chem. Theory Comput. 2011; 7: 625
- 43b Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J. Am. Chem. Soc. 2010; 132: 6498
- 44a Jin S, Kim J, Kim D, Park J, Chang S. ACS Catal. 2021; 11: 6590
- 44b Kim J, Jin S, Kim D, Chang S. Bull. Kor. Chem. Soc. 2021; 42: 529
- 44c Kim Y, Kim D, Chang S. Chem. Commun. 2021; 57: 12309
- 44d Kim J, Shin K, Jin S, Kim D, Chang S. J. Am. Chem. Soc. 2019; 141: 4137
- 44e Shin K, Park Y, Baik M, Chang S. Nat. Chem. 2018; 10: 218
- 45 Li L, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2008; 130: 12414
- 46 Wu Z, Su F, Lin W, Song J, Wen T, Zhang H, Xu H. Angew. Chem. Int. Ed. 2019; 58: 1
- 47 Stangier M, Messinis A, Oliveira JC. A, Yu H, Ackermann L. Nat. Commun. 2021; 12: 4736
- 48a Ozols K, Jang Y.-S, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
- 48b Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
- 48c Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 1542
- 48d Zhang L.-B, Hao X.-Q, Liu Z.-J, Zheng X.-X, Zhang S.-K, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 10012
- 48e Ma W, Ackermann L. ACS Catal. 2015; 5: 2822
- 48f Grigorjeva L, Daugulis O. Org. Lett. 2015; 17: 1204
- 48g Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 49 Meyer TH, Oliveira JC. A, Ghorai D, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 10955
For selected reviews on C–H activation, see: