Synlett 2023; 34(19): 2262-2292 DOI: 10.1055/a-2068-6215
Cross-Coupling Reactions between Alkenes by C–H Cyclometalation
Xi Lu
a
Research Institute of Petroleum Exploration and Development of Sinopec, Baisha Road No.5 of Shahe Town, Changping County, Beijing, 102200, P. R. of China
,
Yini Wang
b
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, P. R. of China
,
Kailin Xie∗
b
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, P. R. of China
,
Jian Zhang∗
b
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, P. R. of China
› Institutsangaben We gratefully acknowledge the National Natural Science Foundation of China (NSFC) (22278103 and 21502037), the Natural Science Foundation of Zhejiang Province (ZJNSF) (LY19B020006 and LY15B020008), the Key Subject of Stomatology in Hangzhou, Hangzhou Normal University, National Key R&D Program of China (2018YFA0702400), and Sinopec Technology (P22015) for financial support.
Abstract
Alkenes are one of the most abundant raw feedstocks and are utilized to construct complex chemicals, whilst cross-coupling reactions using alkenes represents a powerful method toward valuable chemicals. In the past decade, cross-coupling reactions of simple alkenes by chelation-assisted alkenyl C–H functionalization has attracted significant attention due to its atom/step efficiency and excellent Z /E selectivity, proceeding by C–H exo -cyclometalation and endo -cyclometalation. In this account, we summarize transition-metal-catalyzed cross-coupling reactions between alkenes to generate 1,3-dienes via C–H alkenylation,1,4-dienes through C–H allylation, multisubstituted alkenes via hydroalkenylation, and heterocycles by way of tandem alkenyl C–H functionalization/annulation. Asymmetric alkenyl C–H alkenylation to prepare axially chiral aryl 1,3-dienes is also discussed.
1 Introduction
2 Alkenyl C–H Alkenylation
2.1 By endo -Cyclometalation
2.2 By exo -Cyclometalation
3 Alkenyl C–H Allylation
3.1 By endo -Cyclometalation
3.2 By exo -Cyclometalation
4 Alkenyl C–H Alkylation via Hydroalkenylation
5 Cascade Reactions
6 Conclusion
Key words
alkenes -
C–H functionalization -
cross-coupling -
chelation assistance -
transition-metal catalysis
Publikationsverlauf
Eingereicht: 14. März 2023
Angenommen nach Revision: 04. April 2023
Accepted Manuscript online: 04. April 2023
Artikel online veröffentlicht: 24. Mai 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Stereoselective Alkene Synthesis
. In
Topics in Current Chemistry , Vol. 327.
Wang J.
Springer-Verlag, Berlin/Heidelberg, 2012;
1b
Sigman MS,
Werner EW.
Acc. Chem. Res. 2012; 45: 874
1c
Huang Y,
Hayashi T.
Chem. Rev. 2022; 122: 14346
2a
Deb A,
Maiti D.
Eur. J. Org. Chem. 2017; 1239
2b
Shang X,
Liu Z.-Q.
Chem. Soc. Rev. 2013; 42: 3253
3a
Hatamoto Y,
Sakaguchi S,
Ishii Y.
Org. Lett. 2004; 6: 4623
3b
Xu Y.-H,
Lu J,
Loh T.-P.
J. Am. Chem. Soc. 2009; 131: 1372
3c
Yu H,
Jin W,
Sun C,
Chen J,
Du W,
He S,
Yu Z.
Angew. Chem. Int. Ed. 2010; 49: 5792
3d
Besset T,
Kuhl N,
Patureau FW,
Glorius F.
Chem. Eur. J. 2011; 17: 7167
3e
Zhang Y,
Cui Z,
Li Z,
Liu Z.-Q.
Org. Lett. 2012; 14: 1838
4a
Engle KM,
Mei T.-S,
Wasa M,
Yu J.-Q.
Acc. Chem. Res. 2012; 45: 788
4b
Sambiagio C,
Schönbauer D,
Blieck R,
Dao-Huy T,
Pototschnig G,
Schaaf P,
Wiesinger T,
Zia MF,
Wencel-Delord J,
Besset T,
Maes BU. W,
Schnürch M.
Chem. Soc. Rev. 2018; 47: 6603
4c
Colby DA,
Bergman RG,
Ellman JA.
Chem. Rev. 2010; 110: 624
4d
Ackermann L.
Chem. Rev. 2011; 111: 1315
4e
Arockiam PB,
Bruneau C,
Dixneuf PH.
Chem. Rev. 2012; 112: 5879
4f
He J,
Wasa M,
Chan KS. L,
Shao Q,
Yu J.-Q.
Chem. Rev. 2017; 117: 8754
4g
Zhang J,
Lu X,
Shen C,
Xu L,
Ding L,
Zhong G.
Chem. Soc. Rev. 2021; 50: 3263
5
Zhang J,
Loh T.-P.
Chem. Commun. 2012; 48: 11232
6
Hu S,
Wang D,
Liu J,
Li X.
Org. Biomol. Chem. 2013; 11: 2761
7
Boultadakis-Arapinis M,
Hopkinson MN,
Glorius F.
Org. Lett. 2014; 16: 1630
8
Feng R,
Yu W,
Wang K,
Liu Z,
Zhang Y.
Adv. Synth. Catal. 2014; 356: 1501
9
Hu X.-H,
Zhang J,
Yang X.-F,
Xu Y.-H,
Loh T.-P.
J. Am. Chem. Soc. 2015; 137: 3169
10
Hu X.-H,
Yang X.-F,
Loh T.-P.
Angew. Chem. Int. Ed. 2015; 54: 15535
11
Li F,
Yu C,
Zhang J,
Zhong G.
Org. Lett. 2016; 18: 4582
12
Yu C,
Li F,
Zhang J,
Zhong G.
Chem. Commun. 2017; 53: 533
13
Li F,
Yu C,
Zhang J,
Zhong G.
Org. Biomol. Chem. 2017; 15: 1236
14
Liang Q.-J,
Yang C,
Meng F.-F,
Jiang B,
Xu Y.-H,
Loh T.-P.
Angew. Chem. Int. Ed. 2017; 56: 5091
15
Li T,
Zhang J,
Yu C,
Lu X,
Xu L,
Zhong G.
Chem. Commun. 2017; 53: 12926
16
Zhao Q,
Tognetti V,
Joubert L,
Besset T,
Pannecoucke X,
Bouillon J.-P,
Poisson T.
Org. Lett. 2017; 19: 2106
17
Jiang B,
Zhao M,
Li S.-S,
Xu Y.-H,
Loh T.-P.
Angew. Chem. Int. Ed. 2018; 57: 555
18
Meng K,
Sun Y,
Zhang J,
Zhang K,
Ji X,
Ding L,
Zhong G.
Org. Lett. 2019; 21: 8219
19
Li T,
Shen C,
Sun Y,
Zhang J,
Xiang P,
Lu X,
Zhong G.
Org. Lett. 2019; 21: 7772
20
Yoshimura R,
Shibata Y,
Tanaka K.
J. Org. Chem. 2019; 84: 13164
21
Wang H,
Beiring B,
Yu D.-G,
Collins KD,
Glorius F.
Angew. Chem. Int. Ed. 2013; 52: 12430
22
Gong T.-J,
Su W,
Liu Z.-J,
Cheng W.-M,
Xiao B,
Fu Y.
Org. Lett. 2014; 16: 330
23
Shen C,
Zhu Y,
Jin S,
Xu K,
Luo S,
Xu L,
Zhong G,
Zhong L,
Zhang J.
Org. Chem. Front. 2022; 9: 989
24a
Zheng S.-C,
Wu S,
Zhou Q,
Chung LW,
Ye L,
Tan B.
Nat. Commun. 2017; 8: 15238
24b
Jia S,
Chen Z,
Zhang N,
Tan Y,
Liu Y,
Deng J,
Yan H.
J. Am. Chem. Soc. 2018; 140: 7056
24c
Thevenon A,
Cyriac A,
Myer D,
White AJ. P,
Durr CB,
Williams CK.
J. Am. Chem. Soc. 2018; 140: 6893
24d
Ma C,
Sheng F.-T,
Wang H.-Q,
Deng S,
Zhang Y.-C,
Jiao Y,
Tan W,
Shi F.
J. Am. Chem. Soc. 2020; 142: 15686
25
Jin L,
Zhang P,
Li Y,
Yu X,
Shi B.-F.
J. Am. Chem. Soc. 2021; 143: 12335
26
Shen C,
Zhu Y,
Shen W,
Jin S,
Zhong G,
Luo S,
Xu L,
Zhong J,
Zhang J.
Org. Chem. Front. 2022; 9: 2109
27
Dai D.-T,
Yang M.-W,
Chen Z.-Y,
Wang Z.-L,
Xu Y.-H.
Org. Lett. 2022; 24: 1979
28
Tsai H.-C,
Huang Y.-H,
Chou C.-M.
Org. Lett. 2018; 20: 1328
29
Wang Y.-C,
Huang Y.-H,
Tsai H.-C,
Basha RS,
Chou C.-M.
Org. Lett. 2020; 22: 6765
30
Liu M,
Yang P,
Karunananda MK,
Wang Y,
Liu P,
Engle KM.
J. Am. Chem. Soc. 2018; 140: 5805
31
Meng K,
Li T,
Yu C,
Shen C,
Zhang J,
Zhong G.
Nat. Commun. 2019; 10: 5109
32
Xu S,
Hirano K,
Miura M.
Org. Lett. 2020; 22: 9059
33
Schreib BS,
Son M,
Aouane FA,
Baik M.-H,
Carreira EM.
J. Am. Chem. Soc. 2021; 143: 21705
34
Zhu Y,
Chen F,
Cheng D,
Chen Y,
Zhao X,
Wei W,
Lu Y,
Zhao J.
Org. Lett. 2020; 22: 8786
35
Liu M,
Sun J,
Erbay TG,
Ni H.-Q,
Martín-Montero R,
Liu P,
Engle KM.
Angew. Chem. Int. Ed. 2022; 61: e202203624
36
Shen C,
Zhu Y,
Shen W,
Jin S,
Zhong L,
Luo S,
Xu L,
Zhong G,
Zhang J.
Org. Chem. Front. 2022; 9: 4834
37
Zhang S.-S,
Wu J.-Q,
Lao Y.-X,
Liu X.-G,
Liu Y,
Lv W.-X,
Tan D.-H,
Zeng Y.-F,
Wang H.
Org. Lett. 2014; 16: 6412
38
Gensch T,
Vásquez-Céspedes S,
Yu D.-G,
Glorius F.
Org. Lett. 2015; 17: 3714
39
Feng C,
Feng D,
Loh T.-P.
Chem. Commun. 2015; 51: 342
40
Sharma S,
Han SH,
Oh Y,
Mishra NK,
Han S,
Kwak JH,
Lee S.-Y,
Jung YH,
Kim IS.
J. Org. Chem. 2016; 81: 2243
41
Yu W,
Zhang W,
Liu Y,
Liu Z,
Zhang Y.
Org. Chem. Front. 2017; 4: 77
42
Wu X,
Ji H.
J. Org. Chem. 2018; 83: 12094
43a
Xu L,
Meng K,
Zhang J,
Sun Y,
Lu X,
Li T,
Jiang Y,
Zhong G.
Chem. Commun. 2019; 55: 9757
43b
Huang Y,
Xu L,
Yu F,
Shen W,
Lu X,
Ding L,
Zhong L,
Zhong G,
Zhang J.
J. Org. Chem. 2020; 85: 7225
44
Shen C,
Lu X,
Zhang J,
Ding L,
Sun Y,
Zhong G.
Chem. Commun. 2019; 55: 13582
45
Kakiuchi F,
Tanaka Y,
Sato T,
Chatani N,
Murai S.
Chem. Lett. 1995; 24: 679
46
Kuninobu Y,
Fujii Y,
Matsuki T,
Nishina Y,
Takai K.
Org. Lett. 2009; 11: 2711
47
Xing D,
Dong G.
J. Am. Chem. Soc. 2017; 139: 13664
48
Jiang Q,
Guo T,
Wu K,
Yu Z.
Chem. Commun. 2016; 52: 2913
49
Boerth JA,
Hummel JR,
Ellman JA.
Angew. Chem. Int. Ed. 2016; 55: 12650
50
Potter TJ,
Kamber DN,
Mercado BQ,
Ellman JA.
ACS Catal. 2017; 7: 150
51
Kuninobu Y,
Nishina Y,
Matsuki T,
Takai K.
J. Am. Chem. Soc. 2008; 130: 14062
52
Piou T,
Rovis T.
J. Am. Chem. Soc. 2014; 136: 11292
53
Aïssa C,
Ho KY. T,
Tetlow DJ,
Pin-Nó M.
Angew. Chem. Int. Ed. 2014; 53: 4209
54
Casanova N,
Seoane A,
Mascareñas JL,
Gulías M.
Angew. Chem. Int. Ed. 2015; 54: 2374
55
Casanova N,
Del Rio KP,
García-Fandiño R,
Mascareñas JL,
Gulías M.
ACS Catal. 2016; 6: 3349
56
Kuppusamy R,
Muralirajan K,
Cheng C.-H.
ACS Catal. 2016; 6: 3909
57
Yu C,
Zhang J,
Zhong G.
Chem. Commun. 2017; 53: 9902
58
Phipps EJ. T,
Rovis T.
J. Am. Chem. Soc. 2019; 141: 6807
59
Wang S.-G,
Liu Y,
Cramer N.
Angew. Chem. Int. Ed. 2019; 58: 18136
60
Zhou Z,
Liu G,
Lu X.
Org. Lett. 2016; 18: 5668