Subscribe to RSS
DOI: 10.1055/a-2071-7077
Anthraquinone-Catalyzed Photooxidation of Boronic Acids in a Bio-Based Solvent (2-Me-THF)
The authors gratefully acknowledge the Hellenic Foundation for Research and Innovation (HFRI) for financial support through a grant, which is financed by 1st Call for HFRI Research projects to support faculty members & researchers and the procurement of high-cost research equipment grant (grant number 655) and a grant, which is financed by 3rd Call for HFRI PhD fellowships (fellowship number 18553).
In memory of Emeritus Professor Demetrios N. Nicolaides (Aristotle University of Thessaloniki), who passed away in December 2022.
Abstract
The phenol moiety appears in a wide variety of natural products, exhibiting biological activity, and in numerous active pharmaceutical compounds. Boronic acids are potential precursors of the phenol scaffold, and a plethora of efforts has been focused in developing novel and green protocols, targeting their chemoselective transformation into phenols. Photochemistry is a rapidly expanding research field converting light energy into chemical potential. Photochemical aerobic processes possess additional advantages to photochemistry and may find applications in chemical industries. Herein, a low-catalyst-loading anthraquinone-catalyzed photochemical process is demonstrated, under CFL lamp irradiation, while exploiting 2-Me-THF as the reaction medium for the conversion of boronic acids into phenols. Furthermore, a broad substrate scope was employed.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2071-7077.
- Supporting Information
Publication History
Received: 10 February 2023
Accepted after revision: 11 April 2023
Accepted Manuscript online:
11 April 2023
Article published online:
15 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Tyman JH. P. Synthetic and Natural Phenols, Vol. 52 . Elsevier; Amsterdam: 1996
- 2 Scott KA, Cox PB, Njardarson JT. J. Med. Chem. 2022; 65: 7044
- 3 Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Angew. Chem. Int. Ed. 2019; 58: 1904
- 4 Neves AR, Lucio M, Lima JL. C, Reis S. Curr. Med. Chem. 2012; 19: 1663
- 5 Jiang R.-W, Lau K.-M, Hon P.-M, Mak TC. W, Woo K.-S, Fung K.-P. Curr. Med. Chem. 2005; 12: 237
- 6 Napolitano A, De Lucia M, Panzella L, d’Ischia M. The Chemistry of Tyrosol and Hydroxytyrosol, Chap. 134 . Academic Press; London: 2010
- 7 Friedman M. J. Agric. Food Chem. 2014; 6: 7652
- 8 Priyadarsini KI. Molecules 2014; 19: 20091
- 9 For a recent review, see: Hao L, Ding G, Deming DA, Zhang Q. Eur. J. Org. Chem. 2019; 7307
- 10a Inamoto K, Nozawa K, Yonemoto M, Kondo Y. Chem. Commun. 2011; 47: 11775
- 10b Chatterjee S, Paine TK. Inorg. Chem. 2015; 54: 9727
- 11 For a selected example of organocatalyzed aerobic oxidation, see: Cammidge AN, Goddard VH, Schubert CP, Gopee H, Hughes DL, Gonzalez-Lucas D. Org. Lett. 2011; 13: 6034
- 12 Gennaiou K, Petsi M, Kakarikas B, Iordanidis N, Zografos AL. Adv. Synth. Catal. 2022; 364: 3059
- 13 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
- 14 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
- 15 Narayanan JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2008; 131: 8756
- 16a Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
- 16b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 16c Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
- 16d Theodoropoulou MA, Nikitas NF, Kokotos CG. Beilstein J. Org. Chem. 2020; 16: 833
- 16e Nikitas NF, Gkizis PL, Kokotos CG. Org. Biomol. Chem. 2021; 19: 5237
- 16f Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 16g Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 16h Gkizis PL. Eur. J. Org. Chem. 2022; e202201139
- 16i Skolia E, Mountanea OG, Kokotos CG. Trends Chem. 2023; 5: 116
- 17 Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen KA, Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 784
- 18a Byrne FP, Jin S, Paggiola G, Petchey TH. M, Clark JH, Farmer TJ, Hunt AJ, McErloy CR, Sherwood J. Sustain. Chem. Process. 2016; 4: 1
- 18b Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Chem. Rev. 2022; 122: 3637
- 19 Pitre SP, McTiernan CD, Ismaili H, Scaiano JC. J. Am. Chem. Soc. 2013; 135: 13286
- 20 Matsui K, Ishigami T, Yamaguchi T, Tada N, Miura T, Itoh A. Synlett 2014; 25: 2613
- 21 Sideri IK, Voutyritsa E, Kokotos CG. Synlett 2018; 29: 1324
- 22a Papadopoulos GN, Limnios D, Kokotos CG. Chem. Eur. J. 2014; 20: 13811
- 22b Kaplaneris N, Bisticha A, Papadopoulos GN, Limnios D, Kokotos CG. Green Chem. 2017; 19: 4451
- 22c Nikitas NF, Triandafillidi I, Kokotos CG. Green Chem. 2019; 21: 669
- 22d Voutyritsa E, Kokotos CG. Angew. Chem. Int. Ed. 2020; 59: 1735
- 22e Papadopoulos GN, Kokotou MG, Spiliopoulou N, Nikitas NF, Voutyritsa E, Tzaras DI, Kaplaneris N, Kokotos CG. ChemSusChem 2020; 13: 5934
- 22f Nikitas NF, Tzaras DI, Triandafillidi I, Kokotos CG. Green Chem. 2020; 22: 471
- 22g Spiliopoulou N, Kokotos CG. Green Chem. 2021; 23: 546
- 22h Batsika CS, Mantzourani C, Gkikas D, Kokotou MG, Mountanea OG, Kokotos CG, Politis PK, Kokotos G. J. Med. Chem. 2021; 64: 5654
- 22i Nikitas NF, Apostolopoulou MK, Skolia E, Tsoukaki A, Kokotos CG. Chem. Eur. J. 2021; 27: 7915
- 22j Nikitas NF, Voutyritsa E, Gkizis PL, Kokotos CG. Eur. J. Org. Chem. 2021; 96
- 22k Triandafillidi I, Nikitas NF, Gkizis PL, Spiliopoulou N, Kokotos CG. ChemSusChem 2022; 15: e202102441
- 22l Skolia E, Gkizis PL, Nikitas NF, Kokotos CG. Green Chem. 2022; 24: 4108
- 22m Skolia E, Gkizis PL, Kokotos CG. Org. Biomol. Chem. 2022; 20: 5836
- 22n Galathri EM, Di Terlizzi L, Fagnoni M, Protti S, Kokotos CG. Org. Biomol. Chem. 2023; 21: 365
- 22o Stini NA, Poursaitidis ET, Nikitas NF, Kartsinis M, Spiliopoulou N, Ananida-Dasenaki P, Kokotos CG. Org. Biomol. Chem. 2023; 21: 1284
- 22p Skolia E, Kokotos CG. ACS Org. Inorg. Au 2023; 3: 96
- 23 Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 1988
- 24 For detailed experimental procedures, optimization studies, and mechanistic experiments, see the Supporting Information.
- 25 Corma A, Iborra S, Velty A. Chem. Rev. 2007; 107: 2411
- 26 Pace V, Hoyos P, Castoldi L, Dominguez de Maria P, Alcantara AR. ChemSusChem 2012; 5: 1369
- 27a Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
- 27b Arceo E, Montroni E, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 12064
- 27c Woźniak Ł, Murphy JJ, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 5678
- 27d Silvi M, Arceo E, Jurberg ID, Cassani CC, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
- 27e Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218
- 27f Bahamonde A, Melchiorre P. J. Am. Chem. Soc. 2016; 138: 8019
- 28 Hamanoue K, Nakayama T. Proc. Ind. Acad. Sci. 1992; 104: 219
- 29 Lee W, Jung S, Kim M, Hong S. J. Am. Chem. Soc. 2021; 143: 3003
- 30 Chen F, Hu S, Li S, Tang G, Zhao Y. Green Chem. 2021; 23: 296
- 31 Yamaguchi T, Nobuta T, Tada N, Miura T, Nakayama T, Uno B, Itoh A. Synlett 2014; 25: 1453
- 32 For a similar dimer produced under light irradiation of xathnone derivatives, see: Ishida N, Kamae Y, Ishizu K, Kamino Y, Naruse H, Murakami M. J. Am. Chem. Soc. 2021; 143: 2217
- 33 Cervantes-Gonzalez J, Vosburg DA, Mora-Rodriguez SE, Vasquez MA, Zepeda LG, Gomez CV, Lagunas-Rivera S. ChemCatChem 2020; 12: 3811
- 34 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
- 35 For a similar mechanism proposed for a photochemical process using a polymer-containing anthraquinone derivative, see: Chen Y, Hu J, Ding A. RSC Adv. 2020; 10: 7927
- 36 Korth H.-G, Mulder P. J. Org. Chem. 2020; 85: 2560
For selected examples of metal-catalysed aerobic oxidation of boronic acids, see:
For selected reviews, see:
For contributions employing organic molecules in photochemical reactions, see: