Synlett 2023; 34(12): 1472-1476 DOI: 10.1055/a-2072-4537
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science
Regiodivergent Synthesis of Oxadiazocines via Dirhodium-Catalyzed Reactivity of Oxazolidines and α-Imino Carbenes
Olivier Viudes
a
Department of Organic Chemistry, University of Geneva, Quai E. Ansermet 30, 1211 Geneva 4, Switzerland
,
Alejandro Guarnieri-Ibáñez
a
Department of Organic Chemistry, University of Geneva, Quai E. Ansermet 30, 1211 Geneva 4, Switzerland
,
Céline Besnard
b
Laboratory of Crystallography, University of Geneva, Quai E. Ansermet 24, 1211 Geneva 4, Switzerland
,
a
Department of Organic Chemistry, University of Geneva, Quai E. Ansermet 30, 1211 Geneva 4, Switzerland
› Author Affiliations We thank the Université de Genève and the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung for financial support (JL: 200020-184843 and 200020-207539).
Dedicated to Prof. Masahiro Murakami on the occasion of his 65th birthday
Abstract
Using electron-rich or electron-poor N -substituted oxazolidines as substrates, selective formation of either ammonium or oxonium ylides is possible in the presence of α-imino carbenes. As such, treatment of 5-membered oxazolidine precursors with N -sulfonyl-1,2,3-triazoles under dirhodium catalysis (2 mol%) affords the regiodivergent synthesis of either 8-membered 1,3,6- or 1,4,6-oxadiazocines upon the initial N or O reactivity with the carbene.
Key words
carbenes -
diazaoxa heterocycles -
8-membered rings -
regiodivergency -
Rh(II) catalysis -
triazoles -
ylides
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2072-4537.
Supporting Information
Primary Data
The dataset for this article can be found at the following DOI: 10.26037/yareta:3cndx4brorddfaq4rc3oq2ggke. It will be preserved for 10 years.
Primary Data
Publication History
Received: 24 February 2023
Accepted after revision: 12 April 2023
Accepted Manuscript online: 12 April 2023
Article published online: 31 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Meldal M,
Tornøe CW.
Chem. Rev. 2008; 108: 2952
1b
Hein JE,
Fokin VV.
Chem. Soc. Rev. 2010; 39: 1302
1c
Schulze B,
Schubert US.
Chem. Soc. Rev. 2014; 43: 2522
1d
Tiwari VK,
Mishra BB,
Mishra KB,
Mishra N,
Singh AS,
Chen X.
Chem. Rev. 2016; 116: 3086
1e
Haugland MM,
Borsley S,
Cairns-Gibson DF,
Elmi A,
Cockroft SL.
ACS Nano 2019; 13: 4101
2a
Kolb HC,
Finn MG,
Sharpless KB.
Angew. Chem. Int. Ed. 2001; 40: 2004
2b
Lewis WG,
Green LG,
Grynszpan F,
Radić Z,
Carlier PR,
Taylor P,
Finn MG,
Sharpless KB.
Angew. Chem. Int. Ed. 2002; 41: 1053
2c
Amblard F,
Cho JH,
Schinazi RF.
Chem. Rev. 2009; 109: 4207
2d
Le Droumaguet C,
Wang C,
Wang Q.
Chem. Soc. Rev. 2010; 39: 1233
2e
Thirumurugan P,
Matosiuk D,
Jozwiak K.
Chem. Rev. 2013; 113: 4905
3a
Grünanger P,
Finzi PV,
Scotti C.
Chem. Ber. 1965; 98: 623
3b
Harmon RE,
Earl RA,
Gupta SK.
J. Chem. Soc. D 1971; 296
3c
Harmon RE,
Stanley FJr,
Gupta SK,
Johnson J.
J. Org. Chem. 1970; 35: 3444
3d
Hermes ME,
Marsh FD.
J. Am. Chem. Soc. 1967; 89: 4760
4a
Yadagiri D,
Anbarasan P.
Chem. Rec. 2021; 21: 3872
4b
Akter M,
Rupa K,
Anbarasan P.
Chem. Rev. 2022; 122: 13108
5a
Molchanov AP,
Stepakov AV,
Kopf J,
Zenkevich IG,
Kostikov RR.
Russ. Chem. Bull. 2001; 50: 2144
5b
Chuprakov S,
Hwang FW,
Gevorgyan V.
Angew. Chem. Int. Ed. 2007; 46: 4757
5c
Chuprakov S,
Kwok SW,
Zhang L,
Lercher L,
Fokin VV.
J. Am. Chem. Soc. 2009; 131: 18034
5d
Chuprakov S,
Malik JA,
Zibinsky M,
Fokin VV.
J. Am. Chem. Soc. 2011; 133: 10352
5e
Chattopadhyay B,
Gevorgyan V.
Angew. Chem. Int. Ed. 2012; 51: 862
5f
Chuprakov S,
Kwok SW,
Fokin VV.
J. Am. Chem. Soc. 2013; 135: 4652
5g
Gulevich AV,
Gevorgyan V.
Angew. Chem. Int. Ed. 2013; 52: 1371
5h
Schultz EE,
Sarpong R.
J. Am. Chem. Soc. 2013; 135: 4696
5i
Yadagiri D,
Anbarasan P.
Chem. Eur. J. 2013; 19: 15115
5j
Anbarasan P,
Yadagiri D,
Rajasekar S.
Synthesis 2014; 46: 3004
5k
Davies HM. L,
Alford JS.
Chem. Soc. Rev. 2014; 43: 5151
5l
Jeon HJ,
Jung DJ,
Kim JH,
Kim Y,
Bouffard J,
Lee S.-g.
J. Org. Chem. 2014; 79: 9865
5m
Medina F,
Besnard C,
Lacour J.
Org. Lett. 2014; 16: 3232
5n
Miura T,
Nakamuro T,
Liang C.-J,
Murakami M.
J. Am. Chem. Soc. 2014; 136: 15905
5o
Lee DJ,
Ko D,
Yoo EJ.
Angew. Chem. Int. Ed. 2015; 54: 13715
5p
Lei X,
Li L,
He Y.-P,
Tang Y.
Org. Lett. 2015; 17: 5224
5q
Lindsay VN. G,
Viart HM. F,
Sarpong R.
J. Am. Chem. Soc. 2015; 137: 8368
5r
Ryu T,
Baek Y,
Lee PH.
J. Org. Chem. 2015; 80: 2376
5s
Wang Y,
Lei X,
Tang Y.
Synlett 2015; 26: 2051
5t
Xu H.-D,
Jia Z.-H,
Xu K,
Zhou H,
Shen M.-H.
Org. Lett. 2015; 17: 66
5u
Zhao Y.-Z,
Yang H.-B,
Tang X.-Y,
Shi M.
Chem. Eur. J. 2015; 21: 3562
5v
Jiang Y,
Sun R,
Tang X.-Y,
Shi M.
Chem. Eur. J. 2016; 22: 17910
5w
Kubiak RW. II,
Mighion JD,
Wilkerson-Hill SM,
Alford JS,
Yoshidomi T,
Davies HM. L.
Org. Lett. 2016; 18: 3118
5x
Guarnieri-Ibáñez A,
Medina F,
Besnard C,
Kidd SL,
Spring DR,
Lacour J.
Chem. Sci. 2017; 8: 5713
5y
Miura T,
Zhao Q,
Murakami M.
Angew. Chem. Int. Ed. 2017; 56: 16645
5z
Rostovskii NV,
Ruvinskaya JO,
Novikov MS,
Khlebnikov AF,
Smetanin IA,
Agafonova AV.
J. Org. Chem. 2017; 82: 256
5aa
Bosmani A,
Guarnieri-Ibáñez A,
Goudedranche S,
Besnard C,
Lacour J.
Angew. Chem. Int. Ed. 2018; 57: 7151
5ab
Garlets ZJ,
Davies HM. L.
Org. Lett. 2018; 20: 2168
5ac
Jia R,
Meng J,
Leng J,
Yu X,
Deng W.-P.
Chem. Asian J. 2018; 13: 2360
5ad
Liu Z,
Du Q,
Zhai H,
Li Y.
Org. Lett. 2018; 20: 7514
5ae
Yadagiri D,
Chaitanya M,
Reddy AC. S,
Anbarasan P.
Org. Lett. 2018; 20: 3762
5af
Bosmani A,
Guarnieri-Ibáñez A,
Lacour J.
Helv. Chim. Acta 2019; 102: e1900021
5ag
Homberg A,
Poggiali D,
Vishe M,
Besnard C,
Guénée L,
Lacour J.
Org. Lett. 2019; 21: 687
5ah
Ge J,
Wu X,
Bao X.
Chem. Commun. 2019; 55: 6090
5ai
Dequina HJ,
Eshon J,
Raskopf WT,
Fernández I,
Schomaker JM.
Org. Lett. 2020; 22: 3637
5aj
Miura T,
Nakamuro T,
Ishihara Y,
Nagata Y,
Murakami M.
Angew. Chem. Int. Ed. 2020; 59: 20475
5ak
Reddy AC. S,
Ramachandran K,
Reddy PM,
Anbarasan P.
Chem. Commun. 2020; 56: 5649
5al
Guarnieri-Ibáñez A,
de Aguirre A,
Besnard C,
Poblador-Bahamonde AI,
Lacour J.
Chem. Sci. 2021; 12: 1479
5am
Lee JY,
Samala S,
Kim J,
Yoo EJ.
Org. Lett. 2021; 23: 9006
5an
Zhou T,
He X,
Zuo Y,
Wu Y,
Hu W,
Zhang S,
Duan J,
Shang Y.
Chin. J. Chem. 2021; 39: 621
5ao
Dequina HJ,
Eshon J,
Schmid SC,
Raskopf WT,
Sanders KM,
Fernández I,
Schomaker JM.
J. Org. Chem. 2022; 87: 10902
5ap
Huang L.-Z,
Xuan Z,
Park J.-U,
Kim JH.
Org. Lett. 2022; 24: 6951
5aq
Kook GY,
Kim D,
Chae MK,
Ko HM.
J. Org. Chem. 2022; 87: 7253
5ar
Jie Y,
Hu H,
Xu Z.-F,
Duan S,
Li C.-Y.
Adv. Synth. Catal. 2023; 365: 161
5as
Kwon Y.-J,
Lee S.-g,
Kim W.-S.
J. Org. Chem. 2023; 88: 1200
5at
Gunawan N,
Nutt MJ,
Bissember AC,
Smith JA,
Stewart SG.
Synlett 2023; 34: in press
5au
Xu H,
Kong X,
Cen M,
Xu Z.-F,
Duan S,
Li C.-Y.
Eur. J. Org. Chem. 2023; e202201417
6 This aspect was probed later in the manuscript with the reactivity of 1a with oxazolidine 2C′ carrying a tosyl EWG in place of the p -tolyl moiety of 2A . In the presence of this protected and thus less Lewis basic N-atom, dirhodium catalysis could occur at 40 °C only to afford 4aC′ in 93% NMR yield.
7 Triazole 1e has been rarely used for α-imino carbene generation, and this exclusively in the context of Tröger base chemistry; see ref. 5aa.
8a
Miura T,
Funakoshi Y,
Fujimoto Y,
Nakahashi J,
Murakami M.
Org. Lett. 2015; 17: 2454
8b
Miura T,
Zhao Q,
Funakoshi Y,
Murakami M.
Heterocycles 2015; 91: 1579
8c
Miura T,
Fujimoto Y,
Funakoshi Y,
Murakami M.
Angew. Chem. Int. Ed. 2015; 54: 9967
8d
Miura T,
Nakamuro T,
Hiraga K,
Murakami M.
Chem. Commun. 2014; 50: 10474
9
Alford JS,
Davies HM. L.
Org. Lett. 2012; 14: 6020
10a
Harthong S,
Bach R,
Besnard C,
Guénée L,
Lacour J.
Synthesis 2013; 45: 2070
10b
Harthong S,
Brun E,
Grass S,
Besnard C,
Bürgi T,
Lacour J.
Synthesis 2016; 48: 3254
10c
Bach R,
Harthong S,
Lacour J.
Nitrogen- and Sulfur-Based Stevens and Related Rearrangements. In Comprehensive Organic Synthesis II, 2nd ed.
Knochel P.
Elsevier; Amsterdam: 2014: 992
11 CCDC 2241633 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
12 Contrary to the reactions with 2A that present excellent conversions, crude mixture analysis indicated a large proportion of unreacted starting 2B with a ca. 3:1 ratio between 3aB and 2B . See the Supporting Information.
13
General Procedure for Ring Expansion In a screw-cap vial containing oxazolidine 2A (0.2 mmol, 1 equiv) and N -sulfonyl-1,2,3-triazole 1a (0.3 mmol, 1.5 equiv), Rh2 (OPiv)4 (0.004 mmol, 0.02 equiv) in CH2 Cl2 (0.8 mL) were added. The reaction mixture is stirred during 15 h at 60 °C. The solvent was removed under reduced pressure, and the crude residue was purified on chromatography column over SiO2 (pentane/Et2 O, 9:1 to 8:2). Rf
= 0.24 (SiO2 ; pentane/Et2 O, 8:2); mp 165–167 °C. 1 H NMR (500 MHz, CDCl3 ): δ = 2.15 (s, 3 H, CH3 ), 2.43 (s, 3 H, CH3 ), 3.38–3.50 (m, 2 H, CH2 ), 3.66–3.78 (m, 2 H, CH2 ), 5.14 (s, 2 H, CH2 ), 6.46 (d, J = 8.5 Hz, 2 H, CH aromatic), 6.74 (s, 1 H, CH vinylic), 6.89 (d, J = 8.2 Hz, 2 H, CH aromatic), 7.14–7.25 (m, 2 H, CH aromatic), 7.26–7.32 (m, 3 H, CH aromatic), 7.81 (d, J = 8.3 Hz, 2 H, CH aromatic) ppm. 13 C NMR (126 MHz, CDCl3 ): δ = 20.5 (CH3 ), 21.7 (CH3 ), 52.1 (CH2 ), 64.7 (CH2 ) 75.8 (CH2 ), 117.4 (2 CH aromatic), 117.6 (CH aromatic), 126.4 (2 CH aromatic), 127.6 (CH vinyl), 127.9 (CH aromatic), 128.5 (2 CH aromatic), 128.6 (C vinyl), 129.6 (2 CH aromatic), 130 (2 CH aromatic), 131.8 (C aromatic), 137 (C aromatic), 138.1 (C aromatic), 141.2 (C aromatic), 143.9 (C aromatic) ppm. IR (neat): ν = 3851, 3067, 2862, 1592, 1575, 1510, 1444, 1389, 1350, 1300, 1257, 1156, 1128,1097, 1013, 966, 932, 912, 887, 837, 800, 762, 694, 671, 636, 604, 567 cm–1 . HRMS (ESI): m/z calcd for C25 H26 N2 O4 S+ : 451.1687; found: 451.1681 [M + H]+ .
14a
Musonda CC,
Edlin CD,
Boyle GA.
WO2013072903, 2013
14b
Embrey MW,
Hartingh TJ,
Labroli M,
Raheem IT.
WO2019160783, 2019