Synlett 2023; 34(12): 1472-1476
DOI: 10.1055/a-2072-4537
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Regiodivergent Synthesis of Oxadiazocines via Dirhodium-Catalyzed Reactivity of Oxazolidines and α-Imino Carbenes

Olivier Viudes
a   Department of Organic Chemistry, University of Geneva, Quai E. Ansermet 30, 1211 Geneva 4, Switzerland
,
Alejandro Guarnieri-Ibáñez
a   Department of Organic Chemistry, University of Geneva, Quai E. Ansermet 30, 1211 Geneva 4, Switzerland
,
Céline Besnard
b   Laboratory of Crystallography, University of Geneva, Quai E. Ansermet 24, 1211 Geneva 4, Switzerland
,
a   Department of Organic Chemistry, University of Geneva, Quai E. Ansermet 30, 1211 Geneva 4, Switzerland
› Author Affiliations
We thank the Université de Genève and the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung for financial support (JL: 200020-184843 and 200020-207539).


Dedicated to Prof. Masahiro Murakami on the occasion of his 65th birthday

Abstract

Using electron-rich or electron-poor N-substituted oxazolidines as substrates, selective formation of either ammonium or oxonium ylides is possible in the presence of α-imino carbenes. As such, treatment of 5-membered oxazolidine precursors with N-sulfonyl-1,2,3-triazoles under dirhodium catalysis (2 mol%) affords the regiodivergent synthesis of either 8-membered 1,3,6- or 1,4,6-oxadiazocines upon the initial N or O reactivity with the carbene.

Supporting Information

Primary Data



Publication History

Received: 24 February 2023

Accepted after revision: 12 April 2023

Accepted Manuscript online:
12 April 2023

Article published online:
31 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 1b Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 1c Schulze B, Schubert US. Chem. Soc. Rev. 2014; 43: 2522
    • 1d Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
    • 1e Haugland MM, Borsley S, Cairns-Gibson DF, Elmi A, Cockroft SL. ACS Nano 2019; 13: 4101
    • 2a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 2b Lewis WG, Green LG, Grynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 1053
    • 2c Amblard F, Cho JH, Schinazi RF. Chem. Rev. 2009; 109: 4207
    • 2d Le Droumaguet C, Wang C, Wang Q. Chem. Soc. Rev. 2010; 39: 1233
    • 2e Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 3a Grünanger P, Finzi PV, Scotti C. Chem. Ber. 1965; 98: 623
    • 3b Harmon RE, Earl RA, Gupta SK. J. Chem. Soc. D 1971; 296
    • 3c Harmon RE, Stanley FJr, Gupta SK, Johnson J. J. Org. Chem. 1970; 35: 3444
    • 3d Hermes ME, Marsh FD. J. Am. Chem. Soc. 1967; 89: 4760
    • 5a Molchanov AP, Stepakov AV, Kopf J, Zenkevich IG, Kostikov RR. Russ. Chem. Bull. 2001; 50: 2144
    • 5b Chuprakov S, Hwang FW, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 4757
    • 5c Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J. Am. Chem. Soc. 2009; 131: 18034
    • 5d Chuprakov S, Malik JA, Zibinsky M, Fokin VV. J. Am. Chem. Soc. 2011; 133: 10352
    • 5e Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
    • 5f Chuprakov S, Kwok SW, Fokin VV. J. Am. Chem. Soc. 2013; 135: 4652
    • 5g Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 1371
    • 5h Schultz EE, Sarpong R. J. Am. Chem. Soc. 2013; 135: 4696
    • 5i Yadagiri D, Anbarasan P. Chem. Eur. J. 2013; 19: 15115
    • 5j Anbarasan P, Yadagiri D, Rajasekar S. Synthesis 2014; 46: 3004
    • 5k Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
    • 5l Jeon HJ, Jung DJ, Kim JH, Kim Y, Bouffard J, Lee S.-g. J. Org. Chem. 2014; 79: 9865
    • 5m Medina F, Besnard C, Lacour J. Org. Lett. 2014; 16: 3232
    • 5n Miura T, Nakamuro T, Liang C.-J, Murakami M. J. Am. Chem. Soc. 2014; 136: 15905
    • 5o Lee DJ, Ko D, Yoo EJ. Angew. Chem. Int. Ed. 2015; 54: 13715
    • 5p Lei X, Li L, He Y.-P, Tang Y. Org. Lett. 2015; 17: 5224
    • 5q Lindsay VN. G, Viart HM. F, Sarpong R. J. Am. Chem. Soc. 2015; 137: 8368
    • 5r Ryu T, Baek Y, Lee PH. J. Org. Chem. 2015; 80: 2376
    • 5s Wang Y, Lei X, Tang Y. Synlett 2015; 26: 2051
    • 5t Xu H.-D, Jia Z.-H, Xu K, Zhou H, Shen M.-H. Org. Lett. 2015; 17: 66
    • 5u Zhao Y.-Z, Yang H.-B, Tang X.-Y, Shi M. Chem. Eur. J. 2015; 21: 3562
    • 5v Jiang Y, Sun R, Tang X.-Y, Shi M. Chem. Eur. J. 2016; 22: 17910
    • 5w Kubiak RW. II, Mighion JD, Wilkerson-Hill SM, Alford JS, Yoshidomi T, Davies HM. L. Org. Lett. 2016; 18: 3118
    • 5x Guarnieri-Ibáñez A, Medina F, Besnard C, Kidd SL, Spring DR, Lacour J. Chem. Sci. 2017; 8: 5713
    • 5y Miura T, Zhao Q, Murakami M. Angew. Chem. Int. Ed. 2017; 56: 16645
    • 5z Rostovskii NV, Ruvinskaya JO, Novikov MS, Khlebnikov AF, Smetanin IA, Agafonova AV. J. Org. Chem. 2017; 82: 256
    • 5aa Bosmani A, Guarnieri-Ibáñez A, Goudedranche S, Besnard C, Lacour J. Angew. Chem. Int. Ed. 2018; 57: 7151
    • 5ab Garlets ZJ, Davies HM. L. Org. Lett. 2018; 20: 2168
    • 5ac Jia R, Meng J, Leng J, Yu X, Deng W.-P. Chem. Asian J. 2018; 13: 2360
    • 5ad Liu Z, Du Q, Zhai H, Li Y. Org. Lett. 2018; 20: 7514
    • 5ae Yadagiri D, Chaitanya M, Reddy AC. S, Anbarasan P. Org. Lett. 2018; 20: 3762
    • 5af Bosmani A, Guarnieri-Ibáñez A, Lacour J. Helv. Chim. Acta 2019; 102: e1900021
    • 5ag Homberg A, Poggiali D, Vishe M, Besnard C, Guénée L, Lacour J. Org. Lett. 2019; 21: 687
    • 5ah Ge J, Wu X, Bao X. Chem. Commun. 2019; 55: 6090
    • 5ai Dequina HJ, Eshon J, Raskopf WT, Fernández I, Schomaker JM. Org. Lett. 2020; 22: 3637
    • 5aj Miura T, Nakamuro T, Ishihara Y, Nagata Y, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 20475
    • 5ak Reddy AC. S, Ramachandran K, Reddy PM, Anbarasan P. Chem. Commun. 2020; 56: 5649
    • 5al Guarnieri-Ibáñez A, de Aguirre A, Besnard C, Poblador-Bahamonde AI, Lacour J. Chem. Sci. 2021; 12: 1479
    • 5am Lee JY, Samala S, Kim J, Yoo EJ. Org. Lett. 2021; 23: 9006
    • 5an Zhou T, He X, Zuo Y, Wu Y, Hu W, Zhang S, Duan J, Shang Y. Chin. J. Chem. 2021; 39: 621
    • 5ao Dequina HJ, Eshon J, Schmid SC, Raskopf WT, Sanders KM, Fernández I, Schomaker JM. J. Org. Chem. 2022; 87: 10902
    • 5ap Huang L.-Z, Xuan Z, Park J.-U, Kim JH. Org. Lett. 2022; 24: 6951
    • 5aq Kook GY, Kim D, Chae MK, Ko HM. J. Org. Chem. 2022; 87: 7253
    • 5ar Jie Y, Hu H, Xu Z.-F, Duan S, Li C.-Y. Adv. Synth. Catal. 2023; 365: 161
    • 5as Kwon Y.-J, Lee S.-g, Kim W.-S. J. Org. Chem. 2023; 88: 1200
    • 5at Gunawan N, Nutt MJ, Bissember AC, Smith JA, Stewart SG. Synlett 2023; 34: in press DOI: 10.1055/a-1982-5433.
    • 5au Xu H, Kong X, Cen M, Xu Z.-F, Duan S, Li C.-Y. Eur. J. Org. Chem. 2023; e202201417
  • 6 This aspect was probed later in the manuscript with the reactivity of 1a with oxazolidine 2C′ carrying a tosyl EWG in place of the p-tolyl moiety of 2A. In the presence of this protected and thus less Lewis basic N-atom, dirhodium catalysis could occur at 40 °C only to afford 4aC′ in 93% NMR yield.
  • 7 Triazole 1e has been rarely used for α-imino carbene generation, and this exclusively in the context of Tröger base chemistry; see ref. 5aa.
    • 8a Miura T, Funakoshi Y, Fujimoto Y, Nakahashi J, Murakami M. Org. Lett. 2015; 17: 2454
    • 8b Miura T, Zhao Q, Funakoshi Y, Murakami M. Heterocycles 2015; 91: 1579
    • 8c Miura T, Fujimoto Y, Funakoshi Y, Murakami M. Angew. Chem. Int. Ed. 2015; 54: 9967
    • 8d Miura T, Nakamuro T, Hiraga K, Murakami M. Chem. Commun. 2014; 50: 10474
  • 9 Alford JS, Davies HM. L. Org. Lett. 2012; 14: 6020
    • 10a Harthong S, Bach R, Besnard C, Guénée L, Lacour J. Synthesis 2013; 45: 2070
    • 10b Harthong S, Brun E, Grass S, Besnard C, Bürgi T, Lacour J. Synthesis 2016; 48: 3254
    • 10c Bach R, Harthong S, Lacour J. Nitrogen- and Sulfur-Based Stevens and Related Rearrangements. In Comprehensive Organic Synthesis II, 2nd ed. Knochel P. Elsevier; Amsterdam: 2014: 992
  • 11 CCDC 2241633 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
  • 12 Contrary to the reactions with 2A that present excellent conversions, crude mixture analysis indicated a large proportion of unreacted starting 2B with a ca. 3:1 ratio between 3aB and 2B. See the Supporting Information.
  • 13 General Procedure for Ring ExpansionIn a screw-cap vial containing oxazolidine 2A (0.2 mmol, 1 equiv) and N-sulfonyl-1,2,3-triazole 1a (0.3 mmol, 1.5 equiv), Rh2(OPiv)4 (0.004 mmol, 0.02 equiv) in CH2Cl2 (0.8 mL) were added. The reaction mixture is stirred during 15 h at 60 °C. The solvent was removed under reduced pressure, and the crude residue was purified on chromatography column over SiO2 (pentane/Et2O, 9:1 to 8:2). Rf = 0.24 (SiO2; pentane/Et2O, 8:2); mp 165–167 °C. 1H NMR (500 MHz, CDCl3): δ = 2.15 (s, 3 H, CH3), 2.43 (s, 3 H, CH3), 3.38–3.50 (m, 2 H, CH2), 3.66–3.78 (m, 2 H, CH2), 5.14 (s, 2 H, CH2), 6.46 (d, J = 8.5 Hz, 2 H, CH aromatic), 6.74 (s, 1 H, CH vinylic), 6.89 (d, J = 8.2 Hz, 2 H, CH aromatic), 7.14–7.25 (m, 2 H, CH aromatic), 7.26–7.32 (m, 3 H, CH aromatic), 7.81 (d, J = 8.3 Hz, 2 H, CH aromatic) ppm. 13C NMR (126 MHz, CDCl3): δ = 20.5 (CH3), 21.7 (CH3), 52.1 (CH2), 64.7 (CH2) 75.8 (CH2), 117.4 (2 CH aromatic), 117.6 (CH aromatic), 126.4 (2 CH aromatic), 127.6 (CH vinyl), 127.9 (CH aromatic), 128.5 (2 CH aromatic), 128.6 (C vinyl), 129.6 (2 CH aromatic), 130 (2 CH aromatic), 131.8 (C aromatic), 137 (C aromatic), 138.1 (C aromatic), 141.2 (C aromatic), 143.9 (C aromatic) ppm. IR (neat): ν = 3851, 3067, 2862, 1592, 1575, 1510, 1444, 1389, 1350, 1300, 1257, 1156, 1128,1097, 1013, 966, 932, 912, 887, 837, 800, 762, 694, 671, 636, 604, 567 cm–1. HRMS (ESI): m/z calcd for C25H26N2O4S+: 451.1687; found: 451.1681 [M + H]+.
    • 14a Musonda CC, Edlin CD, Boyle GA. WO2013072903, 2013
    • 14b Embrey MW, Hartingh TJ, Labroli M, Raheem IT. WO2019160783, 2019