Osteologie 2023; 32(03): 202-209
DOI: 10.1055/a-2076-7579
Review

Zusammengefasste Empfehlungen für ein körperliches Training zur Frakturprophylaxe postmenopausaler Frauen und Männer 45 Jahre und älter

Summarized Recommendations on Exercise and Fracture Prevention for Postmenopausal Women and Men 45 Years and Older
Simon von Stengel
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
,
Daniel Schöne
2   Institut für Medizinische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
,
Matthias Kohl
3   Department of Medical and Life Sciences, Hochschule Furtwangen – Campus Villingen-Schwenningen, Villingen-Schwenningen, Deutschland
,
Clemens Becker
4   Abteilung Digitale Medizin, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Deutschland
,
Markus Gosch
5   Gerontologie und Geriatrie, Paracelsus Medizinische Privatuniversität – Nürnberg, Nürnberg, Deutschland
,
Franz Jakob
6   Bernhard-Heine-Centrum für Bewegungsforschung, Julius-Maximilians-Universität Würzburg, Würzburg, Deutschland
,
Katharina Kerschan-Schindl
7   Physikalische Medizin und Rehabilitation, Universität Wien, Wien, Österreich
,
Bernd Kladny
8   Fachbereich Orthopädie, m&i-Fachklinik Herzogenaurach, Herzogenaurach, Deutschland
,
Uwe Lange
9   Physikalische Medizin und Osteologie, Kerckhoff-Klinik GmbH, Bad Nauheim, Deutschland
,
Stefan Peters
10   Deutscher Verband für Gesundheitssport und Sporttherapie e.V., Hürth, Deutschland
,
Cornel Sieber
11   Institut für Biomedizin des Alters, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
,
Friederike Thomasius
12   Frankfurter Hormon- und Osteoporosezentrum, Frankfurt, Deutschland
,
Michael Uder
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
,
Mahdieh Shojaa
13   Institute of Health Science, Universitätsklinikum Tübingen, Tübingen, Deutschland
,
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
2   Institut für Medizinische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
› Institutsangaben

Zusammenfassung

Trainingsprotokolle zur Frakturprophylaxe müssen eine Vielzahl von trainingswissenschaftlichen, logistischen und finanziellen Rahmenbedingungen berücksichtigen, um die erwünschte Effektivität und Anwendbarkeit im Einzel- oder Gruppentraining zu gewährleisten. Basierend auf dem individuellen Risikoprofil ist eine Zuordnung von dedizierten Trainingszielen als Ausgangspunkt der Trainingsplanung zielführend. Die konkrete Adressierung individueller Trainingsziele ermöglicht die Auswahl geeigneter Trainingsinhalte, -mittel und -methoden, die ebenfalls den gesundheitlichen Status und Neigungen des Betroffenen berücksichtigen sollten. Durch die idealerweise überdauernde Trainingsdurchführung kommt der Beachtung nachhaltiger Trainingsprinzipen (progressive Belastungserhöhung, Periodisierung) besondere Relevanz im Trainingsprozess zu. Grundsätzlich ist ein individualisiertes körperliches Training zur Frakturprophlaxe aufgrund der großen Anzahl von Therapieoptionen und Ansatzpunkten in jedem Alter und angepasst an funktionellen Status, gesundheitlichen Beschwerden und potentiellen Kontraindikationen sinnvoll und möglich. Mit Ausnahme von Angebotsstrukturen für ambulante Sturzpräventions-Maßnahmen als Einzelangebote existieren im Gesundheitswesen grundsätzlich belastbare Strukturen, die eine eng supervidierte, qualifizierte und co-finanzierte Trainingsdurchführung unterstützen. Die breite Anwendbarkeit und dichte Struktur von Gesundheitsangeboten zur Frakturprophylaxe für nahezu alle Risiko- und Neigungsgruppen kollidiert allerdings mit dem häufig zu geringen Informationsstand bezüglich Effektivität, Durchführung und Angebotsstruktur von Betroffenen aber auch Entscheidern des Gesundheitswesens.

Abstract

The design and implementation of promising training protocols for fracture prevention is a multi-step approach that has to consider a wide range of diverging aspects. Apart from the effectiveness as such, a large number of individual, logistical and financial aspects have to be taken into account to generate ideally persistantly applicable exercise training programs. Applying a sport scientific approach, the definition of dedicated training aims, based on the individual fracture risk profile, is the first step of the training process. The appropriate selection of training content and types along with training tools and methods that best possibly address the defined training aim(s) should also consider the (fracture) risk profile, health status and predispositions of the individual. Since training programs should be maintained as long as possible, ideally for life, particular attention should be paid to training principles (e. g. progressive overload, periodization), something often overlooked in scientific studies of limited duration. Summing up the applicability of exercise programms for fracture prevention, in view of the large variaty of training options and technologies, exercise is a feasible and promizing therapy for most if not all cohorts at risk for fractures – individually adjustable relating to functional status, health issues and potential contraindications. With the exception of structures for fall prevention programs as an individual home-based approach, health care systems already provide closely supervised, qualified and co-financed training programs that could be increasingly used as vehicles for fracture prevention. Unfortunately, the broad applicability of training programs on fracture prevention for almost all risk and propensity groups is often stymied by the frequently insufficient level of information of stakeholders and decision-makers regarding effectiveness, feasibility and applicability of exercise.



Publikationsverlauf

Eingereicht: 24. März 2023

Angenommen: 18. April 2023

Artikel online veröffentlicht:
26. Mai 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Weineck J, Kemmler W, Fröhlich M. Trainingsziele, -inhalte, -mittel und -methoden im Sport. In: Güllich A, Krüger M, Hrsg. Bewegung, Training, Leistung und Gesundheit. Berlin, Heidelberg, Germany: Springer; 2020. DOI: 10.1007/978-3-662-53386-4_42-1
  • 2 Kemmler W, Weineck J, Hensen J, Lauber D, Kalender WA, Engelke K. Empfehlungen für ein körperliches Training zur Verbesserung der Knochenfestigkeit: Schlussfolgerungen aus Tiermodellen und Untersuchungen an Leistungssportlern. Dtsch Z Sportmed 2003; 54: 306-316
  • 3 Gießing J. HIT-Hochintensitätstraining. Arnsberg: Novagenics-Verlag 2008;
  • 4 Steele J, Fisher J, Giessing J. et al. Clarity in Reporting Terminology and Definitions of Set End Points in Resistance Training. Muscle Nerve 2017; 10: 368-374 DOI: 10.1002/mus.25557.
  • 5 Zourdos MC, Klemp A, Dolan C. et al. Novel Resistance Training-Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J Strength Cond Res 2016; 30: 267-275 DOI: 10.1519/JSC.0000000000001049.
  • 6 Weineck J. Optimales Training. Erlangen: Spitta-Verlag; 2019
  • 7 DeGoede KM, Ashton-Miller JA. Fall arrest strategy affects peak hand impact force in a forward fall. J Biomech 2002; 35: 843-848 DOI: 10.1016/s0021-9290(02)00011-8.
  • 8 Groen BE, Smulders E, de Kam D. et al. Martial arts fall training to prevent hip fractures in the elderly. Osteoporos Int 2010; 21: 215-221 DOI: 10.1007/s00198-009-0934-x.
  • 9 Groen BE, Weerdesteyn V, Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J Biomech 2007; 40: 458-462 S0021-9290(06)00004-2 [pii] DOI: 10.1016/j.jbiomech.2005.12.014.
  • 10 Kemmler W, Bebenek M, Kohl M. et al. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2015; 26: 2491-2499 DOI: 10.1007/s00198-015-3165-3.
  • 11 Senn E. Grundlagen der positiv-trophischen Wirksamkeit physikalischer Belastung auf normales, osteopenisches und osteoporotisches Knochengewebe. Phys Med 1994; 4: 133-134
  • 12 Kemmler W, Kohl M, Jakob F. et al. Effects of High Intensity Dynamic Resistance Exercise and Whey Protein Supplements on Osteosarcopenia in Older Men with Low Bone and Muscle Mass. Final Results of the Randomized Controlled FrOST Study. Nutrients 2020; 12: 2341 DOI: 10.3390/nu12082341.
  • 13 Kemmler W, Weineck M, Kohl M. et al. High Intensity Resistance Exercise Training to Improve Body Composition and Strength in Older Men With Osteosarcopenia. Results of the Randomized Controlled Franconian Osteopenia and Sarcopenia. Trial (FrOST). Front Sports and Active Living 2020; 2: 1-12 DOI: 10.3389/fspor.2020.00004.
  • 14 Kenny RA, Rubenstein LZ, Martin FC. et al. Guideline for the prevention of falls in older persons. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. J Am Geriatr Soc 2001; 49: 664-672
  • 15 Hettchen M, von Stengel S, Kohl M. et al. Effects of high-intensity aerobic exercise and resistance training on cardiometabolic risk in early-postmenopausal women. 16-week results of the randomized controlled ACTLIFE-ER study. DZSM 2021; 72: 28-35 DOI: 10.5960/dzsm.2020.449.
  • 16 Kemmler W, Basara K, Engelke K. et al. Einfluss körperlichen Trainings auf Blutfette und Lipoproteine bei postmenopausalen Frauen mit metabolischem Syndrom. Deutsche Zeitschrift für Sportmedizin 2009; 60: 248
  • 17 Kemmler W, Kohl M, von Stengel S. et al Effect of High-Intensity Resistance Exercise on Cardiometabolic Health in Older Men with Osteosarcopenia. The Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). BMJopen 2020; 6 DOI: 10.1136/bmjsem-2020-000846. 10.1002/jbmr.4027
  • 18 Von Stengel S, Löffler V, Kemmler W. Körperliches Training und das 10-Jahres CHD-Risiko bei Frauen über 65 Jahren mit metabolischem Syndrom. Dtsch Z Sportmed 2009; 60: 281-287
  • 19 Milanovic Z, Covic N, Helge EW. et al. Recreational Football and Bone Health: A Systematic Review and Meta-analysis. Sports Med 2022; 52: 3021-3037 DOI: 10.1007/s40279-022-01726-8.
  • 20 Kemmler W, von Stengel S, Engelke K. et al Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 2010; 170: 179-185 170/2/179 [pii] DOI: 10.1001/archinternmed.2009.499.
  • 21 Muehlbauer T, Besemer C, Wehrle A. et al. Relationship between strength, power and balance performance in seniors. Gerontology 2012; 58: 504-512 DOI: 10.1159/000341614.
  • 22 DVO. Prophylaxe, Diagnostik und Therapie der OSTEOPOROSE bei postmenopausalen Frauen und bei Männern. Stuttgart: Schattauer; 2017
  • 23 Born C, Jakob F, Shojaa M. et al. Effects of hormone therapy and exercise on bone mineral density in healthy women – A systematic review and meta-analysis. J Clin Endocrinol Metab 2022; DOI: 10.1210/clinem/dgac180.
  • 24 Klotz C, Jakob F, Kohl M. et al. Effects of exercise and bisphosphonate-therapy on bone mineral density in healthy women – A systematic review and meta-analysis. Osteology 2022; 31: 184-195 DOI: 10.1055/a-1904-5706.
  • 25 Jepsen D, Ryg J, Hansen S. et al. The combined effect of Parathyroid hormone (1–34) and whole-body Vibration exercise in the treatment of postmenopausal OSteoporosis (PaVOS study): a randomized controlled trial. Osteoporosis International 2019; 30: 1827-1836
  • 26 van der Jagt-Willems HC, de Groot MH, van Campen JP. et al. Associations between vertebral fractures, increased thoracic kyphosis, a flexed posture and falls in older adults: a prospective cohort study. BMC Geriatr 2015; 15: 34 DOI: 10.1186/s12877-015-0018-z.
  • 27 Katzman WB, Vittinghoff E, Lin F. et al. Targeted spine strengthening exercise and posture training program to reduce hyperkyphosis in older adults: results from the study of hyperkyphosis, exercise, and function (SHEAF) randomized controlled trial. Osteoporos Int 2017; 28: 2831-2841 DOI: 10.1007/s00198-017-4109-x.
  • 28 Sinaki M, Itoi E, Wahner HW. et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone 2002; 30: 836-841
  • 29 Preisinger E, Alacamlioglu Y, Pils K. et al. Exercise therapy for osteoporosis: results of a randomised controlled trial. Br J Sports Med 1996; 30: 209-212
  • 30 Granacher U, Muehlbauer T, Gschwind Y. et al. Diagnostik und Training von Kraft und Gleichgewicht zur Sturzprävention im Alter. Zeitschrift für Gerontologie und Geriatrie 2014; 47: 513-526
  • 31 Okubo Y, Schoene D, Lord SR. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br J Sports Med 2017; 51: 586-593 DOI: 10.1136/bjsports-2015-095452.
  • 32 Pai YC, Bhatt T, Yang F. et al. Perturbation training can reduce community-dwelling older adults’ annual fall risk: a randomized controlled trial. J Gerontol A Biol Sci Med Sci 2014; 69: 1586-1594 DOI: 10.1093/gerona/glu087.
  • 33 Jepsen DB, Thomsen K, Hansen S. et al. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis. BMJ Open 2017; 7: e018342 DOI: 10.1136/bmjopen-2017-018342.
  • 34 Leung KS, Li CY, Tse YK. et al. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly-a cluster-randomized controlled trial. Osteoporos Int 2014; 25: 1785-1795 DOI: 10.1007/s00198-014-2693-6.
  • 35 Zha DS, Zhu QA, Pei WW. et al. Does whole-body vibration with alternative tilting increase bone mineral density and change bone metabolism in senior people?. Aging Clin Exp Res 2012; 24: 28-36 DOI: 10.3275/7517.
  • 36 de Oliveira RDJ, de Oliveira RG, de Oliveira LC. et al. Effectiveness of whole-body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporosis International 2022; 1-24
  • 37 Martinez-Carbonell Guillamon E, Burgess L, Immins T. et al. Does aquatic exercise improve commonly reported predisposing risk factors to falls within the elderly? A systematic review. BMC geriatrics 2019; 19: 1-16
  • 38 Campbell AJ, Robertson MC, Gardner MM. et al. Falls prevention over 2 years: a randomized controlled trial in women 80 years and older. Age Ageing 1999; 28: 513-518
  • 39 Rognmo O, Moholdt T, Bakken H. et al. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 2012; 126: 1436-1440 DOI: 10.1161/CIRCULATIONAHA.112.123117.
  • 40 Guiraud T, Nigam A, Gremeaux V. et al. High-intensity interval training in cardiac rehabilitation. Sports Med 2012; 42: 587-605 DOI: 10.2165/11631910-000000000-00000.
  • 41 Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 2013; online first: 10.1136/bjsports-2013-092576 DOI: 10.1136/bjsports-2013-092576.
  • 42 Beck BR, Daly RM, Singh MA. et al. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport 2016; 20: 438-445 DOI: 10.1016/j.jsams.2016.10.001.
  • 43 Ponzano M, Tibert N, Brien S. et al. International consensus on the non-pharmacological and non-surgical management of osteoporotic vertebral fractures. Osteoporos Int 2023; DOI: 10.1007/s00198-023-06688-9.
  • 44 Pfeifer M, Begerow B, Minne HW. Effects of a new spinal orthosis on posture, trunk strength, and quality of life in women with postmenopausal osteoporosis: a randomized trial. Am J Phys Med Rehabil 2004; 83: 177-186
  • 45 Pfeifer M, Kohlwey L, Begerow B. et al. Effects of two newly developed spinal orthoses on trunk muscle strength, posture, and quality-of-life in women with postmenopausal osteoporosis: a randomized trial. Am J Phys Med Rehabil 2011; 90: 805-815 DOI: 10.1097/PHM.0b013e31821f6df3.
  • 46 Alin CK, Frisendahl N, Kronhed AG. et al. Experiences of using an activating spinal orthosis in women with osteoporosis and back pain in primary care. Arch Osteoporos 2020; 15: 171 DOI: 10.1007/s11657-020-00754-z.
  • 47 Hettchen M, Willert S, von Stengel S. et al. Effects of the “Spinomed active” orthosis on chronic back pain in kyphotic women with osteoporotic vertebral fractures three months and older: A randomized controlled study. Front Pain Res (Lausanne) 2022; 3: 1038269 DOI: 10.3389/fpain.2022.1038269.
  • 48 Gunendi Z, Eker D, Tecer D. et al. Is the word” osteoporosis” a reason for kinesiophobia?. European journal of physical and rehabilitation medicine 2018; 54: 671-675
  • 49 Ponzano M, Gibbs JC, Adachi JD. et al. Exploring Fear of Falling and Exercise Self-Efficacy in Older Women With Vertebral Fractures. J Aging Phys Act 2021; 29: 219-224 DOI: 10.1123/japa.2019-0485.
  • 50 Gross M, Jansen C-P, Blessing U. et al. Empfehlungspapier für das körperliche Training zur Sturzprävention als Einzelangebot bei älteren, zu Hause lebenden Menschen. physioscience 2020; 16: 176-183
  • 51 Jansen CP, Gross M, Kramer-Gmeiner F. et al. Empfehlungspapier für das körperliche Gruppentraining zur Sturzprävention bei älteren, zu Hause lebenden Menschen. Aktualisierung des Empfehlungspapiers der Bundesinitiative Sturzprävention von 2009. Z Gerontol Geriat 2021; 54: 229-239
  • 52 Hoffmann I, Shojaa M, Kohl M. et al. Exercise reduces the number of overall and major osteoporotic fractures in adults. Does supervision make a difference? Systematic review and meta-analysis. JBMR 2022; 37: 2132-2148 DOI: 10.1002/jbmr.4683.
  • 53 Sherrington C, Fairhall NJ, Wallbank GK. et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev 2019; 1: CD012424 DOI: 10.1002/14651858.CD012424.pub2.
  • 54 SGB_IX. Sozialgesetzbuch Neuntes Buch – Rehabilitation und Teilhabe behinderter Menschen: § 64 Ergänzende Leistungen. . In: Bundesministerium der Justiz und für Verbraucherschutz. Ed. Bundesrepublik-Deutschland; 2019
  • 55 BAR. (Bundesarbeitsgemeinschaft für Rehabilitation) Rahmenvereinbarung über den Rehabilitationssport und das Funktionstraining vom 01. Oktober 2003, i. d. F. vom 01. Januar 2011 Frankfurt am Main. 2011
  • 56 Beck L, Sahar J. Rehabilitationssport und Funktionstraining als Vehikel für ein körperliches Training für Osteoporose-Betroffene – Grundlagen, Perspektiven und Limitationen. Osteologie 2020; 29: 227-230
  • 57 Heupel-Reuter M, Maurer C, Becker C. et al. [Exercises and multimodal interventions for prevention of falls in independently living older people]. Z Gerontol Geriatr 2019; 52: 694-700 DOI: 10.1007/s00391-019-01604-5.
  • 58 Giangregorio L, Thabane L, Cranney A. et al. Osteoporosis knowledge among individuals with recent fragility fracture. Orthop Nurs 2010; 29: 99-107 DOI: 10.1097/NOR.0b013e3181d2436c.
  • 59 American College of Sports M. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009; 41: 687-708 DOI: 10.1249/MSS.0b013e3181915670.
  • 60 Kemmler W, Lauber D, Mayhew D. et al. Predicting maximal strength in trained postmenopausal woman. J Strength Cond Res 2006; 20: 838-842