Subscribe to RSS
DOI: 10.1055/a-2077-5084
Yttrium-Catalyzed Regioselective Aminolysis of 2,3-Epoxy Esters and Amides
This work is supported by National Natural Science Foundation of China (Grant No. 21772183) and the University of Science and Technology of China.
Dedicated to 80th birthday of Professor Hisashi Yamamoto.
Abstract
Herein, an yttrium-catalyzed regioselective ring-opening reaction of 2,3-epoxy esters and amides with amines as nucleophiles is presented. This method features high regiocontrol, an enantiospecific SN2 reaction pathway, a broad substrate scope, and mild reaction conditions, furnishing a wide range of α-hydroxy β-amino esters and amides in regioisomerically pure forms. Notably, the selective nucleophilic attack to the C-3 position is controlled by the directing effect of the carbonyl group of the substrates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2077-5084.
- Supporting Information
Publication History
Received: 29 March 2023
Accepted after revision: 19 April 2023
Accepted Manuscript online:
19 April 2023
Article published online:
22 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Jacobsen E. Acc. Chem. Res. 2000; 33: 421
- 1b Pastor MI, Yus M. Curr. Org. Chem. 2005; 9: 1
- 1c Schneider C. Synthesis 2006; 3919
- 1d Pineschi M. Eur. J. Org. Chem. 2006; 2006: 4979
- 1e Huang C.-Y (D.), Doyle AG. Chem. Rev. 2014; 114: 8153
- 1f Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
- 1g Saddique FA, Zahoor AF, Faiz S, Naqvi SA. R, Usman M, Ahmad M. Synth. Commun. 2016; 46: 831
- 1h Meninno S, Lattanzi A. Chem. Eur. J. 2016; 22: 3632
- 1i Hubbell AK, Coates GW. J. Org. Chem. 2020; 85: 13391
- 2a Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen E. Science 1997; 277: 936
- 2b Ready JM, Jacobsen EN. J. Am. Chem. Soc. 1999; 121: 6086
- 2c Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 1307
- 2d Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 84
- 2e Rodríguez JR, Navarro A. Tetrahedron Lett. 2004; 45: 7495
- 2f Sundararajan G, Vijayakrishna K, Varghese B. Tetrahedron Lett. 2004; 45: 8253
- 2g Su W, Chen J, Wu H, Jin C. J. Org. Chem. 2007; 72: 4524
- 2h Wang T, Ji W.-H, Xu Z.-Y, Zeng B.-B. Synlett 2009; 1511
- 2i Li Y, Hao H.-D, Wu Y. Org. Lett. 2009; 11: 2691
- 2j Sobhani S, Vafaee A. Tetrahedron 2009; 65: 7691
- 2k Zhang Q, Nguyen HM. Chem. Sci. 2014; 5: 291
- 2l Wang Z, Kuninobu Y, Kanai M. J. Am. Chem. Soc. 2015; 137: 6140
- 2m Cheng G, Li T.-J, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 10950
- 2n Huang T, Lin L, Hu X, Zheng J, Liu X, Feng X. Chem. Commun. 2015; 51: 11374
- 2o Jamieson ML, Hume PA, Furkert DP, Brimble MA. Org. Lett. 2016; 18: 468
- 2p Wenz J, Wadepohl H, Gade LH. Chem. Commun. 2017; 53: 4308
- 2q Zhu G, Bao G, Li Y, Sun W, Li J, Hong L, Wang R. Angew. Chem. Int. Ed. 2017; 56: 5332
- 2r Xu S, Takamatsu K, Hirano K, Miura M. Angew. Chem. Int. Ed. 2018; 57: 11797
- 2s Liu W, Spannenberg A, Junge K, Beller M. Nat. Catal. 2019; 2: 523
- 2t Yao C, Dahmen CT, Gansäuer A, Norton J. Science 2019; 364: 764
- 3a Nugent WA. J. Am. Chem. Soc. 1992; 114: 2768
- 3b Martínez LE, Leighton JL, Carsten DH, Jacobsen EN. J. Am. Chem. Soc. 1995; 117: 5897
- 3c Iida T, Yamamoto N, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1997; 119: 4783
- 3d Iida T, Yamamoto N, Matsunaga S, Woo H.-G, Shibasaki M. Angew. Chem. Int. Ed. 1998; 37: 2223
- 3e Tao B, Lo MM.-C, Fu GC. J. Am. Chem. Soc. 2001; 123: 353
- 3f Ready JM, Jacobsen EN. Angew. Chem. Int. Ed. 2002; 41: 1374
- 3g Schneider C, Sreekanth AR, Mai E. Angew. Chem. Int. Ed. 2004; 43: 5691
- 3h Zhao L, Han B, Huang Z, Miller M, Huang H, Malashock DS, Zhu Z, Milan A, Robertson DE, Weiner DP, Burk MJ. J. Am. Chem. Soc. 2004; 126: 11156
- 3i Arai K, Lucarini S, Salter MM, Ohta K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2007; 129: 8103
- 3j Arai K, Salter MM, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 955
- 3k Pu X, Qi X, Ready JM. J. Am. Chem. Soc. 2009; 131: 10364
- 3l Kalow JA, Doyle AG. J. Am. Chem. Soc. 2010; 132: 3268
- 3m Wang Z, Law WK, Sun J. Org. Lett. 2013; 15: 5964
- 3n Monaco MR, Prévost S, List B. J. Am. Chem. Soc. 2014; 136: 16982
- 3o Monaco MR, Prévost S, List B. Angew. Chem. Int. Ed. 2014; 53: 8142
- 4a Hoveyda AH, Evans DA, Fu GC. Chem. Rev. 1993; 93: 1307
- 4b Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
- 4c Sawano T, Yamamoto H. J. Org. Chem. 2018; 83: 4889
- 4d Bhadra S, Yamamoto H. Chem. Rev. 2018; 118: 3391
- 5 For a review on the directed regioselective nucleophilic ring opening of epoxides, see: Wang C, Luo L, Yamamoto H. Acc. Chem. Res. 2016; 49: 193
- 6a Wang C, Yamamoto H. J. Am. Chem. Soc. 2014; 136: 6888
- 6b Wang C, Yamamoto H. Angew. Chem. Int. Ed. 2014; 53: 13920
- 6c Uesugi S.-i, Watanabe T, Imaizumi T, Shibuya M, Kanoh N, Iwabuchi Y. Org. Lett. 2014; 16: 4408
- 6d Wang C, Yamamoto H. Org. Lett. 2014; 16: 5937
- 6e Wang C, Yamamoto H. J. Am. Chem. Soc. 2015; 137: 4308
- 6f Zhang Y.-Q, Funken N, Winterscheid P, Gansäuer A. Angew. Chem. Int. Ed. 2015; 54: 6931
- 6g Wang C, Yamamoto H. Angew. Chem. Int. Ed. 2015; 54: 8760
- 6h Tanveer K, Jarrah K, Taylor MS. Org. Lett. 2015; 17: 3482
- 6i Zhang Y.-Q, Poppel C, Panfilova A, Bohle F, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 9719
- 6j Garrett GE, Tanveer K, Taylor MS. J. Org. Chem. 2017; 82: 1085
- 6k Fan P, Su S, Wang C. ACS Catal. 2018; 8: 6820
- 6l Liu J, Yao H, Wang C. ACS Catal. 2018; 8: 9376
- 6m Wang G, Garrett GE, Taylor MS. Org. Lett. 2018; 20: 5375
- 6n Su S, Wang C. Org. Lett. 2019; 21: 2436
- 6o Fan P, Wang C. Commun. Chem. 2019; 2: 104
- 6p Yao H, Liu J, Wang C. Org. Biomol. Chem. 2019; 17: 1901
- 6q Nakamura D, Sasano Y, Iwabuchi Y. Org. Biomol. Chem. 2019; 17: 3581
- 6r Wang G, Taylor MS. Adv. Synth. Catal. 2020; 362: 398
- 6s Liu J, Wang C. ACS Catal. 2020; 10: 556
- 6t Desai SP, Taylor MS. Org. Lett. 2021; 23: 7049
- 7a Johnson MR, Nakata T, Kishi Y. Tetrahedron Lett. 1979; 20: 4343
- 7b Suzuki T, Saimoto H, Tomioka H, Oshima K, Nozaki H. Tetrahedron Lett. 1982; 23: 3597
- 7c Caron M, Sharpless KB. J. Org. Chem. 1985; 50: 1557
- 7d Maruoka K, Sano H, Yamamoto H. Chem. Lett. 1985; 14: 599
- 7e Chong JM, Cyr DR, Mar EK. Tetrahedron Lett. 1987; 28: 5009
- 7f Caron M, Carlier PR, Sharpless KB. J. Org. Chem. 1988; 53: 5185
- 7g Bonini C, Righi G, Sotgiu G. J. Org. Chem. 1991; 56: 6206
- 7h Canas M, Poch M, Verdaguer X, Moyano A, Pericàs MA. Riera A. Tetrahedron Lett. 1991; 32: 6931
- 7i Chini M, Crotti P, Flippin LA, Gardelli C, Giovani E, Macchia F, Pineschi M. J. Org. Chem. 1993; 58: 1221
- 7j Tomata Y, Sasaki M, Tanino K, Miyashita M. Org. Lett. 2001; 3: 1765
- 7k Sasaki M, Tanino K, Miyashita M. Tetrahedron Lett. 2003; 44: 8975
- 7l Sasaki M, Tanino K, Hirai A, Miyashita M. Org. Lett. 2003; 5: 1789
- 7m Mukerjee P, Abid M, Schroeder FC. Org. Lett. 2010; 12: 3986
- 7n Jiang H, Xu L.-P, Fang Y, Zhang Z.-X, Yang Z, Huang Y. Angew. Chem. Int. Ed. 2016; 55: 14340
- 7o Zhang Y.-Q, Bohle F, Bleith R, Schnakenburg G, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2018; 57: 13528
- 8 Chong JM, Sharpless KB. J. Org. Chem. 1985; 50: 1560
- 9 For an isolated example of a Y-catalyzed ring opening of an epoxy ester, see: Natongchai W, Kahn RA, Alsalme A, Shaikh RR. Catalysts 2017; 7: 340
- 10 Ethyl (±)-erythro-3-[(3-Bromophenyl)amino]-2-hydroxy-5-phenylpentanoate (3ae); Typical Procedure To a suspension of the Y(OTf)3 (16.1 mg, 0.03 mmol, 15 mol%) in THF (0.5 mL) were added the amine 2e (34.2 mg, 0.2 mmol, 1.0 equiv) and the epoxide 1a (66.0 mg, 0.3 mmol, 1.5 equiv) at rt. The resulting mixture was heated to 60 °C and stirred at this temperature for 24 h. The mixture was then cooled to rt, and the solvent was removed in vacuum. The residue was purified by column chromatography [silica gel, PE–EtOAc (5:1)] to give a yellow oil; yield: 65 mg (83%). 1H NMR (400 MHz, CDCl3): δ = 7.30–7.23( m, 2 H), 7.22–7.16 (m, 1 H), 7.13–7.08 (m, 2 H), 7.01 (t, J = 8.0 Hz, 1 H), 6.84 (ddd, J = 7.9, 1.9, 0.9 Hz, 1 H), 6.77 (t, J = 2.1 Hz, 1 H), 6.53 (ddd, J = 8.2, 2.4, 0.9 Hz, 1 H), 4.38–4.27 (m, 1 H), 4.19 (q, J = 7.1 Hz, 2 H), 3.96 (d, J = 10.3 Hz, 1 H), 3.73–3.64 (br s, 1 H), 2.93 (d, J = 5.5 Hz, 1 H), 2.87–2.75 (m, 1 H), 2.73–2.55 (m, 1 H), 1.93–1.79 (m, 1 H), 1.67–1.57 (m, 1 H), 1.22 (t, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 173.4, 148.5, 141.3, 130.7, 128.5 (4 C), 126.1, 123.4 , 120.8, 116.6, 112.5, 71.3, 62.1, 54.6, 32.1, 31.3, 14.2. HRMS (ESI): m/z [M + H]+ calcd for C19H23BrNO3: 392.0856; found: 392.0866.
For general reviews on nucleophilic ring-opening reactions of epoxides, see:
For selected examples on regioselective ring opening of sterically or electronically biased epoxides without directing groups, see:
For selected examples of desymmetrization of meso-epoxides, see:
For reviews on organic reactions involving directing groups, see:
For selected examples of catalytic hydroxy or sulfonamide-directed nucleophilic ring opening of epoxides or aziridines, see:
For selected examples of hydroxy-directed nucleophilic ring opening of epoxides or aziridines using stoichiometric promotors, see: