Synthesis 2024; 56(04): 693-699
DOI: 10.1055/a-2102-1192
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

One-Pot Telescopic Approach to Synthesize Disubstituted Benz­imidazoles in Deep Eutectic Solvent

Soumyadip Das
,
K.C. would like to thank the administration of the Vellore Institute of Technology for offering seed money as a research grant.


Abstract

An ongoing challenge in the pharmaceutical sector is the need to find and implement novel synthetic approaches because traditional methods sometimes violate the principles of green chemistry. While benzimidazoles are of great importance as building blocks for the creation of molecules having pharmacological activity, the development of methods for their sustainable synthesis has been a challenge for organic synthesis. Herein, we have carried out a one-pot telescopic approach to the synthesis of disubstituted benzimidazole derivatives in a deep eutectic solvent (DES) medium to investigate an alternate synthetic technique. Starting with methyl 4-fluoro-3-nitrobenzoate, SNAr reaction, reduction, and cyclization were performed with choline chloride/glycerol/H2O as DES medium, which gave the best performance out of the five DESs examined. We report the synthesis of disubstituted benzimidazoles via one-pot telescopic approach.

Supporting Information



Publication History

Received: 04 March 2023

Accepted after revision: 26 May 2023

Accepted Manuscript online:
26 May 2023

Article published online:
03 July 2023

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 2a Dawoud NT. A, El-Fakharany EM, Abdallah AE, El-Gendi H, Lotfy DR. Sci. Rep. 2022; 12: 3424 ; and references cited therein
    • 2b Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
  • 3 Das S, Chanda K. ChemNanoMat 2022; 8: e202200375
  • 4 Ahmad MG, Chanda K. Coord. Chem. Rev. 2022; 472: 214769
  • 5 Rao NR, Jena S, Mukherjee M, Maiti B, Chanda K. Environ. Chem. Lett. 2021; 19: 3315
    • 6a Aca Çevik U, Sağlık BN, Korkut B, Özkay Y, Ilgın S. J. Heterocycl. Chem. 2018; 55: 138
    • 6b Wu Z, Xia M.-B, Bertsetseg D, Wang Y.-H, Bao X.-L, Zhu W.-B, Tao Xu, Chen P.-R, Tang H.-S, Yan Y.-J, Chen Z.-L. Bioorg. Chem. 2020; 101: 104042
    • 6c El-Gohary NS, Shaaban MI. Eur. J. Med. Chem. 2017; 131: 255
    • 6d Sharma R, Bali A, Chaudhari BB. Bioorg. Med. Chem. Lett. 2017; 27: 3007
    • 6e Shingalapur RV, Hosamani KM, Keri RS, Hugar MH. Eur. J. Med. Chem. 2010; 45: 1753
    • 6f Tantray MA, Khan I, Hamid H, Alam MS, Dhulap A, Kalam A. RSC Adv. 2016; 6: 43345
    • 6g Tonelli M, Paglietti G, Boido V, Sparatore F, Marongiu F, Marongiu E, La Colla P, Loddo R. Chem. Biodivers. 2008; 5: 2386
    • 6h Salahuddin, Shaharyar M, Mazumder A. Arabian J. Chem. 2017; 10: S157
  • 7 Yadav S, Narasimhan B, Kaur H. Anti-Cancer Agents Med. Chem. 2016; 16: 1403
  • 8 Rajasekhar S, Maiti B, Balamurali MM, Chanda K. Curr. Org. Synth. 2017; 14: 40
  • 11 Di Carmine G, Abbott AP, D’Agostino C. React. Chem. Eng. 2021; 6: 582
    • 12a Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ. Eur. J. Org. Chem. 2016; 612
    • 12b Rente D, Paiva A, Duarte AR. Molecules 2021; 26: 2336
  • 13 Shaibuna M, Hiba K, Shebitha AM, Kuniyil MJ. K, Sherly mole PB, Sreekumar K. Curr. Res. Green Sustainable Chem. 2022; 5: 100285
  • 14 Di Gioia ML, Cassano R, Costanzo P, Cano NH, Maiuolo L, Nardi M, Nicoletta FP, Oliverio M, Procopio A. Molecules 2019; 24: 2885
  • 15 Ishikawa H, Suzuki T, Hayashi Y. Angew. Chem. Int. Ed. 2009; 48: 1304
    • 16a Padmaja RD, Balamurali MM, Chanda K. J. Org. Chem. 2019; 84: 11382
    • 16b Saikia AA, Rao RN, Maiti B, Balamurali MM, Chanda K. ACS Comb. Sci. 2020; 22: 630
  • 17 Delaye PO, Pénichon M, Boudesocque-Delaye L, Enguehard-Gueiffier C, Gueiffier A. SynOpen 2018; 2: 306