Subscribe to RSS
DOI: 10.1055/a-2124-4161
Study on Integrated Synthesis of Dimeric Pyranonaphthoquinones: Preparation of Versatile Synthetic Intermediate and Conversion into ent-Hemi-actinorhodin and ent-Hemi-γ-actinorhodin
This research was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant No. JP16H06351, JP21H04703), the Takeda Science Foundation, and the TOBE MAKI Scholarship Foundation.
In memory of Professor Yoshito Kishi
Abstract
For developing general synthetic access toward dimeric pyranonaphthoquinones including β-naphthocyclinone, actinorhodin, and γ-actinorhodin, we report stereodefined 6,9,10-trioxypyranonaphthalene as a versatile intermediate. Its robust preparation started from ethyl (S)-4-chloro-3-hydroxybutyrate. The pyranonaphthalene core was constructed by a Michael–Dieckmann sequence, and methylation using Me3Al and BF3·OEt2 established the required trans structure in a scalable manner. Conversion of this intermediate into ent-hemi-actinorhodin and into ent-hemi-γ-actinorhodin are also reported, in which the conditions for the oxidative lactonization were optimized.
Key words
stereoselective synthesis - pyranonaphthoquinone - naphthazarin - natural product - oxidative lactonizationSupporting Information
- Supporting information for this article is available online at https://doi.org/ 10.1055/a-2124-4161.
- Supporting Information
Publication History
Received: 22 June 2023
Accepted after revision: 06 July 2023
Accepted Manuscript online:
06 July 2023
Article published online:
28 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ando Y, Hori S, Fukazawa T, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2015; 54: 9650
- 1b Fukazawa T, Ando Y, Ohmori K, Hayashi T, Suzuki K. Org. Lett. 2017; 19: 1470
- 1c Ninomiya M, Ando Y, Kudo F, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2019; 58: 4264
- 1d Ando Y, Fukazawa T, Ohmori K, Suzuki K. Chem. Lett. 2020; 49: 1103
- 2a Zeeck A, Mardin M. Justus Liebigs Ann. Chem. 1974; 1063
- 2b Zeeck A, Zähner H, Mardin M. Justus Liebigs Ann. Chem. 1974; 1100
- 2c Krone B, Zeeck A. Liebigs Ann. Chem. 1983; 471
- 2d Egert E, Noltemeyer M, Sheldrick GM, Saenger W, Brand H, Zeeck A. Liebigs Ann. Chem. 1983; 503
- 2e Krone B, Zeeck A. Liebigs Ann. Chem. 1983; 510
- 3a Zeeck A, Christiansen P. Liebigs Ann. Chem. 1969; 724: 172 ; and references therein
- 3b Gorst-Allman CP, Rudd BA. M, Chang C.-J, Floss HG. J. Org. Chem. 1981; 46: 455
- 4 Christiansen P. Ph.D. Dissertation . University of Göttingen; Germany: 1970
- 5a Fernandes RA, Patil PH, Chaudhari DA. Eur. J. Org. Chem. 2016; 5778
- 5b Hazra G, Mishra G, Dandela R, Thirupathi B. J. Org. Chem. 2022; 87: 11925
- 6 Neumeyer M, Brückner R. Angew. Chem. Int. Ed. 2017; 56: 3383
- 7a Brimble MA, Nairn MR, Prabaharan H. Tetrahedron 2000; 56: 1937
- 7b Sperry J, Bachu P, Brimble MA. Nat. Prod. Rep. 2008; 25: 376
- 7c Naysmith BJ, Hume PA, Sperry J, Brimble MA. Nat. Prod. Rep. 2017; 34: 25
- 7d Neumeyer M, Brückner R. Eur. J. Org. Chem. 2017; 2512
- 7e Zhang Q, O'Doherty GA. Tetrahedron 2018; 74: 4994
- 7f Song X, Wang R, Shi L, Luo T, Gao Z, Ren L, Zhou W, Hao HD. Adv. Synth. Catal. 2021; 363: 4338
- 8 Ōmura S, Tanaka H, Okada Y, Marumo H. J. Chem. Soc., Chem. Commun. 1976; 320 ; and references therein
- 10 Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou KC. Angew. Chem. Int. Ed. 1999; 38: 270
- 11 Hashimoto M, Watari S, Taguchi T, Ishikawa K, Kumamoto T, Okamoto S, Ichinose K. Angew. Chem. Int. Ed. 2023; 62: e202214400
- 12a Brimble MA, Duncalf LJ, Phythian SJ. J. Chem. Soc., Perkin Trans. 1 1997; 1399
- 12b Mulay SV, Bhowmik A, Fernandes RA. Eur. J. Org. Chem. 2015; 4931
- 13 Laatsch H. Liebigs Ann. Chem. 1987; 297
- 14 Ando Y, Fukazawa T, Ohmori K, Suzuki K. Bull. Chem. Soc. Jpn. 2021; 94: 1364
- 15a Taguchi T, Ebihara T, Furukawa A, Hidaka Y, Ariga R, Okamoto S, Ichinose K. Bioorg. Med. Chem. Lett. 2012; 22: 5041
- 15b Taguchi T, Yabe M, Odaki H, Shinozaki M, Metsä-Ketelä M, Arai T, Okamoto S, Ichinose K. Chem. Biol. 2013; 20: 510
- 16a Tatsuta K, Yamazaki T, Mase T, Yoshimoto T. Tetrahedron Lett. 1998; 39: 1771
- 16b Park YS, Grove CI, Gonzalez-Lopez M, Urgaonkar S, Fettinger JC, Shaw JT. Angew. Chem. Int. Ed. 2011; 50: 3730
- 16c Grove CI, Shaw JT. Synthesis 2012; 44: 362
- 16d Donner CD. Tetrahedron 2013; 69: 3747
- 17 Blitz M, Heinze RC, Harms K, Koert U. Org. Lett. 2019; 21: 785
- 18a Tomooka K, Matsuzawa K, Suzuki K, Tsuchihashi G.-i. Tetrahedron Lett. 1987; 28: 6339
- 18b Minehan TG, Kishi Y. Tetrahedron Lett. 1997; 38: 6815
- 18c Xu Y.-C, Kohlman DT, Liang SX, Erikkson C. Org. Lett. 1999; 1: 1599
- 18d Tatsuta K, Tokishita S, Fukuda T, Kano T, Komiya T, Hosokawa S. Tetrahedron Lett. 2011; 52: 983
- 18e Zhang Y, Wang X, Sunkara M, Ye Q, Ponomereva LV, She Q.-B, Moriis AJ, Thorson JS. Org. Lett. 2013; 15: 5566
- 19 Chen PH, Savage NA, Dong G. Tetrahedron 2014; 70: 4135
- 20 Bates RB, Kroposki LM, Potter DE. J. Org. Chem. 1972; 37: 560
- 21 Maturi MM, Ohmori K, Suzuki K. Chimia 2018; 72: 870
- 22 Maki BE, Scheidt KA. Org. Lett. 2008; 10: 4331
- 23a Hinoue K, Mikami M. EP1582518A1, 2005
- 23b Quan LG, Boo CJ, Hong MH, Lee JK, Lee JM, Kim S.-J. WO2008093955A1, 2008
- 23c Li P, Sun J, Su M, Yang X, Tang X. Org. Biomol. Chem. 2014; 12: 2263
- 24 Yamaguchi M, Hirao I. Tetrahedron Lett. 1983; 24: 391
- 25a Donner CD. Tetrahedron Lett. 2007; 48: 8888
- 25b Donner CD. Tetrahedron 2013; 69: 377
- 26 See the Supporting Information.
- 27 Shibuya M, Tomizawa M, Suzuki I, Iwabuchi Y. J. Am. Chem. Soc. 2006; 128: 8412
- 28a Ōmura S, Tanaka H, Okada Y, Marumo H. J. Chem. Soc., Chem. Commun. 1976; 320
- 28b Li T, Ellison RH. J. Am. Chem. Soc. 1978; 100: 6263
- 28c Ichihara A, Ubukata M, Oikawa H, Murakami K, Sakamura S. Tetrahedron Lett. 1980; 21: 4469
- 28d Kometani T, Takeuchi Y, Yoshii E. J. Org. Chem. 1983; 48: 2311
- 28e Masquelin T, Hengartnerb U, Streith J. Helv. Chim. Acta 1997; 80: 43
- 28f Contant P, Haess M, Riegel J, Scalone M, Visnick M. Synthesis 1999; 821
- 28g Song X, Wang R, Shi L, Luo T, Gao Z, Ren L, Zhou W, Hao HD. Adv. Synth. Catal. 2021; 363: 4338 ; and ref. 28
- 28h Pyrek JS, Achmatowicz O, Zamojski A. Tetrahedron 1977; 33: 673
- 28i Krone B, Zeeck A. Liebigs Ann. Chem. 1983; 471
- 29 Experimental Procedures and Characterization Data of ent-Hemi-γ-acthinorhodin (12) To a solution of ent-hemi-actinorhodin (ent-8, 25.0 mg, 0.0785 mmol) in acetone (5.2 mL) and H2O (0.5 mL) was added pyridine (320 μL, 3.96 mmol), and then a flask was thoroughly purged with O2. After stirring for 24 h at room temperature, the reaction mixture was poured into mixed solvent of 1 M aqueous HCl and EtOAc, and the aqueous layer was removed. The combined organic extracts were washed with H2O and brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography (oxalic acid coated silica gel, CH2Cl2/ EtOAc = 9/1) to afford ent-hemi-γ-actinorhodin (12, 18.7 mg, 75%) as a red solid. ent-Hemi-γ-actinorhodin (12) Rf = 0.86 (CHCl3/MeOH = 9/1); mp 195 °C (decomp.). 1H NMR (600 MHz, CDCl3): δ = 1.57 (d, 3 H, J = 7.2 Hz), 2.71 (d, 1 H, J = 18.0 Hz), 2.98 (dd, 1 H, J = 18.0, 4.8 Hz), 4.72 (dd, 1 H, J = 4.8, 3.0 Hz), 5.16 (q, 1 H, J = 7.2 Hz), 5.30 (d, 1 H, J = 3.0 Hz), 7.23 (d, 1 H, J = 2.4 Hz), 7.25 (d, 1 H, J = 2.4 Hz), 12.49 (s, 1 H, OH), 12.53 (s, 1 H, OH). 13C NMR (150 MHz, CDCl3): δ = 18.3, 36.9, 66.3, 66.6, 68.6, 111.0, 111.7, 132.5, 133.0 (2C), 148.7, 165.9, 166.3, 173.9, 176.7, 177.4. IR (neat): 2924, 2848, 1787, 1612, 1567, 1454, 1407, 1404, 1340, 1249, 1203, 1154, 1115, 1093, 1067, 1034, 800, 715, 707, 668 cm–1. UV/Vis (MeCN): λmax (ε) = 216 (41332), 277 (9025), 491 (6718), 518 (7270), 561 (4074) nm. HRMS (ESI-TOF): m/z calcd for C16H13O7 [M + H]+: 317.0655; found: 317.0659.
- 30 This reaction starts from the enolization of ent-8, which was facilitated by pyridine as a base. For the proposed mechanism, see: Li T, Ellison RH. J. Am. Chem. Soc. 1978; 100: 6263 ; and ref 7a
For a review, see:
For a recent study, see:
For recent examples, see:
For a review, see:
The structure of the cis isomer was verified by the independent synthesis following known procedure. See:
Although this conversion was well known for the juglone derivatives, only few examples have been reported for the naphthazarin congeners. For juglone derivatives, see:
For naphthazarin derivatives, see: