Subscribe to RSS
DOI: 10.1055/a-2135-9037
A Concise and Flexible Synthesis of C2′-Sulfonylated Quinine Derivatives
Financial support from the National Natural Science Foundation of China (22071235) is acknowledged.
Abstract
A concise and flexible procedure for the synthesis of structurally novel C2′-sulfonylated quinine derivatives is developed. Through careful optimization of the reaction conditions, most of the reactions can be performed in high yields at gram or several hundreds of milligram scale. Since cinchona-based derivatives are widely used in asymmetric catalysis, the synthetic route developed herein provides an efficient and practical pathway for the diverse synthesis of new cinchona derivatives as potential chiral ligands or multifunctional organocatalysts.
Key words
cinchona alkaloid derivatives - synthesis - sulfonylation - asymmetric catalysis - organocatalystSupporting Information
- Supporting information for this article is available online at https://doi.org/ 10.1055/a-2135-9037.
- Supporting Information
Publication History
Received: 26 June 2023
Accepted after revision: 24 July 2023
Accepted Manuscript online:
24 July 2023
Article published online:
07 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Li H, Chen Y, Li D. Cinchona Alkaloids . In Privileged Chiral Ligands and Catalysts, Chap. 10. Zhou Q.-L. Wiley-VCH; Weinheim: 2011: 361
- 2 Shiomi N, Yamamoto K, Nagasaki K, Hatanaka T, Funahashi Y, Nakamura S. Org. Lett. 2017; 19: 74
- 3 Wang Y, Yin H, Tang X, Wu Y, Meng Q, Gao Z. J. Org. Chem. 2016; 81: 7042
- 4 Tan D.-X, Zhou J, Liu C.-Y, Han F.-S. Angew. Chem. Int. Ed. 2020; 59: 3834
- 5 Zhou J, Tan D.-X, Han F.-S. Angew. Chem. Int. Ed. 2020; 59: 18731
- 6 Tan D.-X, Zhou J, Han F.-S. Tetrahedron 2020; 76: 131641
- 7 Sun K, Chen X.-L, Li X, Qu L.-B, Bi W.-Z, Chen X, Ma H.-L, Zhang S.-T, Han B.-W, Zhao Y.-F, Li C.-J. Chem. Commun. 2015; 51: 12111
- 8 Xie L.-Y, Li Y.-J, Qu J, Duan Y, Hu J, Liu K.-J, Cao Z, He W.-M. Green Chem. 2017; 19: 5642
- 9 Zhou J, Gu C.-Y, Han F.-S. Synthesis 2022; 54: 4810
- 10 Dodge JA, Stocksdale MG, Fahey KG, Jones CD. J. Org. Chem. 1995; 60: 739
- 11 Wang Y, Li Z, Xiong T, Zhao J, Meng Q. Synlett 2014; 25: 2155
- 12 Schörgenhumer J, Otte S, Haider V, Novacek J. Tetrahedron 2020; 76: 130816
- 13 McOmie JF. W, West DE. Org. Synth. Coll. Vol. V . John Wiley & Sons; New York: 1973: 412
- 14 Brenner E, Baldwin RM, Tamagnan G. Tetrahedron Lett. 2004; 45: 3607
- 15 Bernard AM, Ghiani MR, Piras PP, Rivoldini A. Synthesis 1989; 287
- 16 Harrison IT. J. Chem. Soc., Chem. Commun. 1969; 11: 616
- 17 Jung ME, Lyster MA. J. Org. Chem. 1977; 42: 3761
- 18 Sato N, Endo H. J. Chem. Res. 2009; 4: 229
- 19 Nagaoka H, Schimid G, Iio H, Kishi Y. Tetrahedron Lett. 1981; 22: 899
- 20 Kemperman GJ, Roeters TA, Hilberink PW. Eur. J. Org. Chem. 2003; 1681
- 21 King PF, Stroud SG. Tetrahedron Lett. 1985; 26: 1415
- 22 Parker KA, Petraitis JJ. Tetrahedron Lett. 1981; 22: 397
- 23 Node M, Nishide K, Fuji K, Fujita E. J. Org. Chem. 1980; 45: 4275
- 24 Shi X, He W, Li H, Zhang X, Zhang SY. Tetrahedron Lett. 2011; 52: 3204
- 25 Marcelli T, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 7496
- 26 Ding R, Zheng B, Wang Y, Peng YG. Org. Lett. 2015; 17: 4128