Synlett 2023; 34(19): 2341-2345
DOI: 10.1055/a-2138-7655
letter

Lewis Acid Catalyzed Multicomponent Reaction of Aliphatic Aldehydes, Ynamides, Carboxylic Acids, and Amines to Access β3-Acylamino Amides

Shasha Li
,
This work was financially supported by the 2022 scientific research project of the Department of Education of Liaoning Province (LJKMZ20221250).


Abstract

An atom-economical strategy for the synthesis of alkylated β3-acylamino amides via Lewis acid catalyzed one-pot multicomponent reaction of ynamides, carboxylic acids, and aromatic amines with aliphatic aldehydes is described. In addition to the synthetic utility and scalability, the method exhibits excellent substrate scope and functional-group tolerance. The products can easily be transformed into valuable building blocks, such as peptide chains.

Supporting Information



Publication History

Received: 31 May 2023

Accepted after revision: 25 July 2023

Accepted Manuscript online:
25 July 2023

Article published online:
21 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Boge TC, Georg GI. The Medicinal Chemistry of β-Amino Acids: Paclitaxel as an Illustrative Example. In Enantioselective Synthesis of β-Amino Acids. Juaristi E. Wiley-VCH; New York: 1997: 1-43
    • 1b Tamariz J. Enantioselective Synthesis of (-Amino Acids. Juaristi E. Wiley-VCH; New York: 1997: 45-66
    • 1c Spiteller P, von Nussbaumin F. β-Amino Acids in Natural Products. In Enantioselective Synthesis of β-Amino acids, 2nd ed. Juaristi E, Soloshonok VA. Wiley; Hoboken: 2005: 19-91
    • 1d Ashfaq M, Tabassum R, Ahmad MM, Hassan NA, Oku H. Med. Chem. 2015; 5: 295
    • 2a Casettari L, Vllasaliu D, Lam JK. W, Soliman M, Illum L. Biomaterials 2012; 33: 7565
    • 2b Sadovnikova MS, Belikov VM. Russ. Chem. Rev. 1978; 47: 199
    • 2c Grauer A, Konig B. Eur. J. Org. Chem. 2009; 5099
    • 2d Albericio F, Kruger HG. Future Med. Chem. 2012; 4: 1527
    • 2e Craik DJ, Fairlie DP, Liras S, Price D. Chem. Biol. Drug Des. 2013; 81: 136
    • 2f Kaspar AA, Reichert JM. Drug Discovery Today 2013; 18: 807
    • 2g Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK, Spellmeyer DC, Tan R, Frankel AD, Santi DV, Cohen F, Bartlett PA. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 9367
    • 2h Wu CW, Sanborn TJ, Zuckermann RN, Barron AE. J. Am. Chem. Soc. 2001; 123: 2958
  • 3 Vickers CJ, Gonzalez-Paez GE, Wolan DW. J. Am. Chem. Soc. 2013; 135: 12869
    • 4a Geueke B, Namoto K, Agarkova I, Perriard J.-C, Kohler H.-PE, Seebach D. ChemBioChem 2005; 6: 982
    • 4b Horne WS, Price JL, Keck JL, Gellman SH. J. Am. Chem. Soc. 2007; 129: 4178
    • 4c Sadowsky JD, Fairlie WD, Hadley EB, Lee H.-S, Umezawa N, Nikolovska-Coleska Z, Wang S, Huang DC. S, Tomita Y, Gellman SH. J. Am. Chem. Soc. 2007; 129: 139
    • 4d Raguse TL, Lai JR, Gellman SH. Helv. Chim. Acta 2002; 85: 4154
    • 5a Lee HS, Park JS, Kim BM, Gellman SH. J. Org. Chem. 2003; 68: 1575
    • 5b Guichard G, Abele S, Seebach D. Helv. Chim. Acta 1998; 81: 187
    • 5c Mondal S, Chowdhury S. Adv. Synth. Catal. 2018; 360: 1884
    • 5d He G, Wang B, Nack WA, Chen G. Acc. Chem. Res. 2016; 49: 635
    • 5e Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
    • 5f Najera C, Sansano JM. Chem. Rev. 2007; 107: 4584
    • 5g Sengupta S, Mehta G. Tetrahedron Lett. 2017; 58: 1357
    • 5h Brandhofer T, Mancheño OG. Eur. J. Org. Chem. 2018; 6050
    • 5i Wasa M, Chan KS. L, Zhang X.-G, He J, Miura M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 18570
    • 5j Wasa M, Yu J.-Q. Tetrahedron 2010; 66: 4811
    • 5k Zhu Y, Chen X, Yuan C, Li G, Zhang J, Zhao Y. Nat. Commun. 2017; 8: 14904
    • 5l Castro LC. M, Chatani N. Chem. Eur. J. 2014; 20: 4548

      For reviews, see:
    • 6a Dçmling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
    • 6b de Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 6c Garbarino S, Ravelli D, Protti S, Basso A. Angew. Chem. Int. Ed. 2016; 55: 15476 ; Angew. Chem. 2016, 128, 15702

      For reviews, see:
    • 7a Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
    • 7b Toure BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 7c Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083

    • for selected articles, see:
    • 7d Liéby-Muller F, Constantieux T, Rodriguez J. J. Am. Chem. Soc. 2005; 127: 17176
    • 7e Pando O, Stark S, Denkert A, Porzel A, Preusentanz R, Wessjohann LA. J. Am. Chem. Soc. 2011; 133: 7692
  • 8 Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 386
  • 9 Zhang J, Yu P, Li S.-Y, Sun H, Xiang S.-H, Wang J, Houk K, Tan B. Science 2018; 361, eaas8707
    • 10a Dömling A. Chem. Rev. 2012; 112: 3083
    • 10b Huang B, Zeng L, Shen Y, Cui S. Angew. Chem. Int. Ed. 2017; 56: 4565
    • 10c Wang C, Lai Z, Xie H, Cui S. Angew. Chem. Int. Ed. 2021; 60: 5147
  • 11 Zhang J, Wang Y.-Y, Sun H, Li S.-Y, Xiang S.-H, Tan B. Sci. China Chem. 2020; 63: 47
  • 12 Liu Y, Shi S, Achtenhagen M, Liu R, Szostak M. Org. Lett. 2017; 19: 1614
  • 13 Synthesis of β3-Alkyl-β-acylamino Amides; General Procedure To a Schlenk tube was added ynamide (0.12 mmol) and acid (0.12 mmol), and the tube was evacuated and purged with argon three times. DCM (1 mL) was then added as solvent and the solution was stirred at room temperature until the starting material was fully consumed (6–12 h). Aldehyde (0.12 mmol) and aniline (0.1 mmol) were then added at a temperature below –30 °C, then BF3·OEt2 (10 mol%) was added. Upon completion, silica gel was added to the flask and volatiles were evaporated under vacuum. Purification by flash column chromatography on silica gel (ethyl acetate/petroleum ether) gave the desired product. N-(1-(Benzyloxy)-4-((N,4-dimethylphenyl)sulfonamido)-4-oxobutan-2-yl)-N-(3,5-dibromophenyl)benzamide (5a): 1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 8.0 Hz, 2 H), 7.35–7.22 (m, 11 H), 7.18–7.14 (m, 4 H), 4.90 (s, 1 H), 4.54 (dd, J = 18.0, 11.6 Hz, 2 H), 3.82 (s, 1 H), 3.73–3.69 (m, 1 H), 3.33 (s, 1 H), 3.31 (s, 3 H), 3.16 (dd, J = 17.2, 4.4 Hz, 1 H), 2.39 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 171.0, 170.8, 145.0, 137.7, 136.0, 136.0, 132.7, 131.3, 130.0, 129.9, 128.5, 128.2, 128.0, 127.8, 127.7, 127.5, 122.3, 73.3, 69.8, 57.3, 36.5, 33.2, 21.7. HRMS (ESI): m/z [M + H]+ calcd for C32H31Br2N2O5S: 713.0315; found: 713.0317. N-(1-(Benzyloxy)-4-oxo-4-(propylamino)butan-2-yl)-N-(3,5-dibromophenyl)benzamide (7): 1H NMR (400 MHz, CDCl3): δ = 7.40 (s, 1 H), 7.34–7.30 (m, 4 H), 7.27–7.25 (m, 4 H), 7.20 (d, J = 4.4 Hz, 4 H), 5.97 (s, 1 H), 4.81–4.74 (m, 1 H), 4.49 (s, 2 H), 4.01 (t, J = 8.8 Hz, 1 H), 3.72 (dd, J = 9.6, 5.2 Hz, 1 H), 3.24–3.09 (m, 2 H), 3.02–2.96 (m, 1 H), 2.61 (dd, J = 16.4, 5.6 Hz, 1 H), 1.49–1.40 (m, 2 H), 0.87 (t, J = 7.6 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 171.5, 170.0, 137.7, 136.0, 132.5, 130.8, 130.2, 128.5, 128.3, 128.1, 127.8, 127.6, 122.4, 73.2, 69.8, 59.8, 41.5, 37.0, 22.8, 11.4. HRMS (ESI): m/z [M + H]+ calcd for C27H29Br2N2O3: 587.0540; found: 587.0542.