Synlett 2024; 35(12): 1429-1435
DOI: 10.1055/a-2184-4836
letter

A Study on the Diazo-Transfer Reaction Using o-Nitrobenzenesulfonyl Azide

Sungduk Gwak
,
Ji Hye Lee
,
,
Hogyu Han
H.H. is grateful for the financial support from the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF2021R1A2C1094754).


Abstract

15N-Labeled azides have a great potential as practical and effective tags for vibrational probing and hyperpolarized magnetic resonance imaging of biomolecules. They can be synthesized by reaction of primary amines with a 15N-labeled diazo-transfer reagent. TfNN15N, a γ-15N-labeled diazo-transfer reagent, was developed to prepare β-15N-labeled azides; these are vibrational probes devoid of strong spectral interference by Fermi resonance. To overcome the stability and safety problems associated with TfNN15N, there is a strong demand for the development of a novel γ-15N-labeled diazo-transfer reagent. We present a study on the diazo-transfer reaction using o-nitrobenzenesulfonyl azide (o-NsN3). o-NsNN15N, a γ-15N-labeled diazo-transfer reagent, was newly developed and found to be better than TfNN15N with respect to its physicochemical properties and ease of synthesis. Unlike TfNN15N, however, o-NsNN15N was found to afford a mixture of β- and γ-15N-labeled azides rather than the β-15N-labeled azide alone. A mechanism for the diazo-transfer reaction of o-NsNN15N with primary amines is proposed to explain the formation of such isotopomeric mixtures.

Supporting Information



Publication History

Received: 21 April 2023

Accepted after revision: 29 September 2023

Accepted Manuscript online:
29 September 2023

Article published online:
30 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Köhn M, Breinbauer R. Angew. Chem. Int. Ed. 2004; 43: 3106
    • 4a Ma J, Pazos IM, Zhang W, Culik RM, Gai F. Annu. Rev. Phys. Chem. 2015; 66: 357
    • 4b Adhikary R, Zimmermann J, Romesberg FE. Chem. Rev. 2017; 117: 1927
    • 4c Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi J.-H, Corcelli SA, Dijkstra AG, Feng C.-J, Garrett-Roe S, Ge N.-H, Hanson-Heine MW. D, Hirst JD, Jansen TL. C, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Chem. Rev. 2020; 120: 7152
  • 7 Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN. Chem. Soc. Rev. 2016; 45: 2075
  • 13 Kwon H.-J, Gwak S, Park JY, Cho M, Han H. ACS Omega 2022; 7: 293
  • 17 Barrow AS, Moses JE. Synlett 2016; 27: 1840
    • 18a Besenyei G, Párkányi L, Foch I, Simándi LI, Kálmán A. J. Chem. Soc., Perkin Trans. 2 2000; 1798
    • 18b Vogt H, Baumann T, Nieger M, Bräse S. Eur. J. Org. Chem. 2006; 5315
    • 18c McGorry RJ, Allen SK, Pitzen MD, Coombs TC. Tetrahedron Lett. 2017; 58: 4623
  • 20 o-, m-, and p-Nitrobenzenesulfonyl Azides; General ProcedureA solution of NaN3 (1.48 g, 22.8 mmol) in H2O (2 mL) was slowly added to a cooled (0 °C) solution of the appropriate nitrobenzenesulfonyl (nosyl) chloride 2 (5.0 g, 22.6 mmol) in THF (50 mL), and the mixture was stirred at r.t. for 3 h. The mixture was then concentrated in vacuo. The residue was dissolved in Et2O (200 mL), washed with sat. aq NaHCO3 (200 mL) and brine (200 mL), dried (Na2SO4), and concentrated in vacuo. The residue was dissolved in 1:1:1 Et2O–CH2Cl2–EtOAc (30 mL) at –40 °C, and hexane (250 mL) was added. The precipitate was then collected by filtration. o-Nitrobenzenesulfonyl Azide (1a)Prepared from o-nitrobenzenesulfonyl chloride (2a; 5.0 g, 22.6 mmol) according to the general procedure as a white solid; yield: 4.92 g (96%); mp 73–74 °C; Rf = 0.25 (EtOAc–hexane, 1:5). 1H NMR (500 MHz, CDCl3): δ = 8.20 (dd, J = 7.8, 1.4 Hz, 1 H), 7.93 (dd, J = 7.9, 1.5 Hz, 1 H), 7.89 (td, J = 7.6, 1.5 Hz, 1 H), 7.84 (td, J = 7.6, 1.6 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 147.68, 135.76, 133.09, 132.50, 131.65, 125.35. HRMS (EI+): m/z [M+] calcd for C6H4N4O4S: 227.9953; found: 227.9956.
  • 21 o-Nitrobenezenesulfonyl Hydrazide (2a′)An 80% solution of N2H4·H2O (4.2 mL, 68.5 mmol) was added to a cooled (0 °C) solution of o-nitrobenzenesulfonyl chloride (2a; 3.0 g, 13.5 mmol) in THF (20 mL), and the mixture was stirred at r.t. for 1 h. The mixture then was concentrated in vacuo. The residue was dissolved in EtOAc (100 mL), washed with sat. aq NaHCO3 (100 mL) and brine (100 mL), dried (Na2SO4), and concentrated in vacuo. The residue was dissolved in CH2Cl2 (5 mL) at –40 °C, and hexane (100 mL) was added. The precipitate was collected by filtration to give a white solid; yield: (2.37 g, 81%); mp 100–101 °C; Rf = 0.30 (MeOH–CH2Cl2, 1:15).1H NMR (500 MHz, CD3CN): δ = 8.07 (ddd, J = 7.2, 2.0, 1.2 Hz, 1 H), 7.87 (ddd, J = 7.5, 2.3, 1.2 Hz, 1 H), 7.85 (td, J = 7.6, 1.5 Hz, 1 H), 7.82 (td, J = 7.5, 1.8 Hz, 1 H), 6.92 (br s, 1 H), 4.00 (br s, 2 H). 13C NMR (125 MHz, CD3CN): δ = 149.43, 135.46, 133.41, 133.14, 130.86, 125.81. HRMS (FAB+): m/z [M + H]+ calcd for C6H8N3O4S: 218.0236; found: 218.0231.
  • 22 γ-15N-Labeled o-Nitrobenezenesulfonyl Azide (γ-1a')1 N aq HCl (10 mL) was added to a solution of 2a′ (1.78 g, 8.22 mmol) in CH2Cl2 (40 mL), and the mixture was stirred at 0 °C for 5 min. A solution of Na15NO2 (0.50 g, 7.14 mmol) in H2O (10 mL) was then slowly added, and the resulting mixture was stirred at r.t. for a further 3 h. The mixture was then concentrated in vacuo. The residue was dissolved in Et2O (150 mL), washed with sat. aq NaHCO3 (150 mL) and brine (150 mL), dried (Na2SO4), and concentrated in vacuo. The residue was purified by flash chromatography [silica gel, EtOAc–hexane (1:10)] to give a white solid; yield: 1.52 g (81%); mp 73–74 °C; Rf = 0.25 (EtOAc–hexane, 1:5).1H NMR (500 MHz, CDCl3): δ = 8.20 (dd, J = 7.8, 1.4 Hz, 1 H), 7.92 (dd, J = 7.9, 1.8 Hz, 1 H), 7.90 (td, J = 7.5, 1.2 Hz, 1 H), 7.84 (ddd, J = 7.8, 7.0, 2.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 147.62, 135.79, 133.11, 132.41, 131.62, 125.34. 15N NMR (50 MHz, CDCl3): δ = 245.31. HRMS (EI+): m/z [M+] calcd for C6H4N3 15NO4S: 228.9924; found: 228.9921.
  • 23 See the Supporting Information for more information.
  • 24 Computational Details26,27 NBO analysis was performed on the structure optimized in the gas phase at the DFT level with the B3LYP functional and the 6–311++G(2d) basis set in Gaussian 16.
    • 25a Kaljurand I, Kütt A, Sooväli L, Rodima T, Mäemets V, Leito I, Koppel IA. J. Org. Chem. 2005; 70: 1019
    • 25b Tshepelevitsh S, Kütt A, Lõkov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. Eur. J. Org. Chem. 2019; 6735
    • 25c Kütt A, Tshepelevitsh S, Saame J, Lõkov M, Kaljurand I, Selberg S, Leito I. Eur. J. Org. Chem. 2021; 1407
  • 27 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision A.03 . Gaussian, Inc.; Wallingford, CT: 2016