Subscribe to RSS
DOI: 10.1055/a-2239-6577
Applications of Quantum Chemistry in Biomimetic Syntheses of Polycyclic Furanocembrane Derivatives
This work is supported by the National Natural Science Foundation of China (22171153 and 21502101), the Ningbo Municipal Bureau of Science and Technology under the CM2025 program (2020Z092), the Natural Science Foundation of Ningbo Municipality (2022J171), the Ministry of Science and Technology of the People’s Republic of China under the funding scheme of the National Key R&D Program of Intergovernmental Kay Projects (2018YFE0101700), the Ningbo Municipal Key Laboratory on Clean Energy Conversion Technologies (2014A22010) and the Zhejiang Provincial Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research funded by the Zhejiang Provincial Department of Science and Technology (2020E10018). Prof. Hirst is supported by the Department of Science, Innovation and Technology (DSIT) and the Royal Academy of Engineering under the Chairs in Emerging Technologies scheme.
Abstract
This account summarizes the guidance provided by quantum chemical calculations towards the biomimetic syntheses of polycyclic marine furanocembrane derivatives. Polycyclic furanocembrane derivatives are a group of structurally complex and biologically important marine natural products isolated from marine corals. Their syntheses are challenging due to their structural complexity. Biomimetic synthetic proposals are made and some are verified via chemical synthesis. Computational chemistry can support these biomimetic syntheses. Hence, we describe herein the synthetic and computational attempts that we have made on the biomimetic syntheses of polycyclic furanocembrane derivatives, including intricarene, bielschowskysin, providencin and plumarellide.
1 Introduction
2 Computational Methodology
3 Introduction to Polycyclic Furanocembrane Derivatives
4 Biomimetic Syntheses of Intricarene, Bielschowskysin and Providencin
5 Computational Studies on the Biomimetic Synthesis of Intricarene
6 Computational Studies on the Biomimetic Synthesis of Bielschowskysin
7 Computational Studies on the Biomimetic Synthesis of Providencin
8 Computational Studies on the Biomimetic Synthesis of Plumarellide
9 Conclusion
Key words
biomimetic synthesis - computational chemistry - photochemistry - furanocembranes - pericyclic reactionPublication History
Received: 31 December 2023
Accepted after revision: 05 January 2024
Accepted Manuscript online:
05 January 2024
Article published online:
12 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Nat. Rev. Drug Discovery 2009; 8: 69
- 1b Newman DJ, Cragg GM. J. Nat. Prod. 2004; 67: 1216
- 1c Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2015; 32: 116
- 1d Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Nat. Prod. Rep. 2018; 35: 8 ; and all preceding reviews in this series
- 1e Berrue F, Kerr RG. Nat. Prod. Rep. 2009; 26: 681
- 2a Bao R, Zhang H, Tang Y. Acc. Chem. Res. 2021; 54: 3720
- 2b Zheng K, Hong R. Acc. Chem. Res. 2021; 54: 3438
- 2c George JH. Acc. Chem. Res. 2021; 54: 1843
- 2d Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156
- 3a Tang B, Bray CD, Pattenden G. Tetrahedron Lett. 2006; 47: 6401
- 3b Tang B, Simion R, Paton RS. Synlett 2015; 26: 501
- 3c Tang B, Paton RS. Org. Lett. 2019; 21: 1243
- 4a Cheng G.-J, Zhang X, Chung LW, Xu L, Wu Y.-D. J. Am. Chem. Soc. 2015; 137: 1706
- 4b Nguyen QN. N, Tantillo DJ. Chem. Asian J. 2014; 9: 674
- 4c Peng Q, Duarte F, Paton RS. Chem. Soc. Rev. 2016; 45: 6093
- 4d Sato H, Saito K, Yamazaki M. Front. Plant Sci. 2019; 10: 802
- 4e Houk KN, Liu F. Acc. Chem. Res. 2017; 50: 539
- 4f Poree C, Schoenebeck F. Acc. Chem. Res. 2017; 50: 605
- 4g Hong YJ, Tantillo DJ. Nat. Chem. 2009; 1: 384
- 4h Hong YJ, Tantillo DJ. Nat. Chem. 2014; 6: 104
- 4i Hornsby CE, Paton RS. Nat. Chem. 2014; 6: 88
- 5a Tantillo DJ. WIREs Comput. Mol. Sci. 2020; 10: e1453
- 5b Tantillo DJ. Chem. Soc. Rev. 2018; 47: 7845
- 5c Elkin M, Newhouse TR. Chem. Soc. Rev. 2018; 47: 7830
- 6a Becke AD. J. Chem. Phys. 1993; 98: 5648
- 6b Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
- 6c Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
- 6d Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
- 6e For the M062X functional, see: Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
- 6f Hare SR, Farnham JM, Tantillo DJ. Tetrahedron 2017; 73: 4227
- 6g Campos RB, Tantillo DJ. J. Org. Chem. 2018; 83: 1073
- 6h Cool LG, Vermillion KE, Takeoka GR, Wang SC, Tantillo DJ. J. Org. Chem. 2018; 83: 5724
- 6i Kron KJ, Kosich M, Cave RJ, Vosburg DA. J. Org. Chem. 2018; 83: 10941
- 6j Laconsay CJ, Tsui KY, Tantillo DJ. Chem. Sci. 2020; 11: 2231
- 6k Bai M, Feng Z, Li J, Tantillo DJ. Chem. Sci. 2020; 11: 9937
- 6l Xing Y.-Y, Chen S.-S, Chen D.-Z, Tantillo DJ. Phys. Chem. Chem. Phys. 2020; 22: 26955
- 6m Lu Y, Tantillo DJ. J. Org. Chem. 2021; 86: 8652
- 6n Hashimoto Y, Tantillo DJ. J. Org. Chem. 2022; 87: 12954
- 6o Laconsay CJ, Rho TC, Tantillo DJ. J. Org. Chem. 2022; 87: 3378
- 7a Penfold TJ, Gindensperger E, Daniel C, Marian CM. Chem. Rev. 2018; 118: 6975
- 7b Li Y, Wang W, Liu F. Chem. Eur. J. 2019; 25: 4194
- 7c Tang Z, Li P, Liu J, Zhou P. J. Phys. Chem. B 2020; 124: 11472
- 7d Sengupta A, Houk KN. J. Phys. Chem. A 2023; 127: 7976
- 8a Ditchfield R, Hehre WJ, Pople JA. J. Chem. Phys. 1971; 54: 724
- 8b Hehre WJ, Ditchfield R, Pople JA. J. Chem. Phys. 1972; 56: 2257
- 8c Krishnan R, Binkley JS, Seeger R, Pople JA. J. Chem. Phys. 1980; 72: 650
- 8d Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
- 8e For the influence of polarization functions, see: Hariharan PC, Pople JA. Theor. Chim. Acta 1973; 28: 213
- 9a Tomasi J, Mennucci B, Cancès E. J. Mol. Struct.: THEOCHEM 1999; 464: 211
- 9b For the SMD solvation method, see: Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
- 10a Palframan MJ, Pattenden G. Eur. J. Org. Chem. 2020; 2330
- 10b Li Y, Pattenden G. Nat. Prod. Rep. 2011; 28: 1269
- 10c Craig RA, Stoltz BM. Chem. Rev. 2017; 117: 7878
- 10d Roethle PA, Trauner D. Nat. Prod. Rep. 2008; 25: 298 ; and references cited in these review papers
- 11a Stonik VA, Kapustina II, Kalinovsky AI, Dmitrenok PS, Grebnev BB. Tetrahedron Lett. 2002; 43: 315
- 11b Venkateswarlu Y, Biabani MA. F, Reddy MV. R, Rao TP, Kunwar AC, Faulkner DJ. Tetrahedron Lett. 1994; 35: 2249
- 11c Anjaneyulu AS. R, Sagar KS, Venugopal MJ. R. V. Tetrahedron 1995; 51: 10997
- 11d Marrero J, Rodríguez AD, Baran P, Raptis RG. Org. Lett. 2003; 5: 2551
- 11e Marrero J, Rodríguez AD, Baran P, Raptis RG, Sánchez JA, Ortega-Barria E, Capson TL. Org. Lett. 2004; 6: 1661
- 11f Marrero J, Rodríguez AD, Barnes CL. Org. Lett. 2005; 7: 1877
- 12a Stichnoth D, Kölle P, Kimbrough TJ, Riedle E, de Vivie-Riedle R, Trauner D. Nat. Commun. 2014; 5: 5597
- 12b Roethle PA, Hernandez PT, Trauner D. Org. Lett. 2006; 8: 5901
- 13 Wang SC, Tantillo DJ. J. Org. Chem. 2008; 73: 1516
- 14 Lygo B, Palframan MJ, Pattenden G. Org. Biomol. Chem. 2014; 12: 7270
- 15a Scesa P, Wangpaichitr M, Savaraj N, West L, Roche SP. Angew. Chem. Int. Ed. 2018; 57: 1316
- 15b Scesa P, West LM, Roche SP. J. Am. Chem. Soc. 2021; 143: 7566
- 15c Nicolaou KC, Adsool VA, Hale CR. H. Angew. Chem. Int. Ed. 2011; 50: 5149
- 17 Winne JM, Catak S, Waroquier M, Speybroeck VV. Angew. Chem. Int. Ed. 2011; 50: 11990
- 18 Li Y, Pattenden G. Tetrahedron 2011; 67: 10045
For the B3LYP functional, see:
For Grimme’s D3 dispersion corrections and BJ-damping, see:
For selected example papers in recent years, see:
For the double-zeta basic set, see:
For the triple-zeta basic set, see:
For the IEFPCM method (the default method in Gaussian 09 and 16), see: