Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(09): 1415-1421
DOI: 10.1055/a-2248-5438
DOI: 10.1055/a-2248-5438
paper
Iodine-Promoted Disproportionate Coupling Reaction of Arylsulfonyl Hydrazides: A Simple and Green Access to Thiosulfonates
This research was supported by Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012342), National Natural Science Foundation of China (20772035) and Natural Science Foundation of Jiangxi Province (No. 20224BAB203010).

Abstract
An environmentally friendly iodine-promoted disproportionate coupling reaction of arylsulfonyl hydrazides is reported. This strategy can synthesize thiosulfonates with medium to excellent yields, and features a green system, wide applicability of substrates, and easy availability of raw materials. The preliminary mechanistic study reveals that iodine plays an important role in the radical reaction process.
Key words
disproportionate coupling reaction - arylsulfonyl hydrazide - thiosulfonate - green synthesis - iodine-promoted - radical reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2248-5438.
- Supporting Information
Publication History
Received: 12 December 2023
Accepted after revision: 17 January 2024
Accepted Manuscript online:
17 January 2024
Article published online:
12 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kurisawa N, Iwasaki A, Teranuma K, Dan S, Toyoshima C, Hashimoto M, Suenaga K. J. Am. Chem. Soc. 2022; 144: 11019
- 1b Zhou Y.-J, Fang Y.-G, Yang K, Lin J.-Y, Li H.-Q, Chen Z.-J, Wang Z.-Y. Molecules 2023; 28: 5635
- 2a Raguz L, Peng C.-C, Rutaganira FU. N, Kruger T, Stanisic A, Jautzus T, Kries H, Kniemeyer O, Brakhage AA, King N, Beemelmanns C. Angew. Chem. Int. Ed. 2022; 61: e202209105
- 2b Zhou Y.-J, Yang K, Fang Y.-G, Luo S.-H, Chen Q, Yu S.-W, Wang Z.-Y. Asian J. Org. Chem. 2022; 11: e202200170
- 3a Liu Y.-H, Chang W, Qu J, Sui Y.-Q, Abdelkrim Y, Liu H.-J, Zhai X.-Z, Guo Y.-G, Yu Z.-Z. Energy Storage Mater. 2022; 46: 313
- 3b Zhou Y.-J, Fang Y.-G, Yang K, Yu S.-W, Chen Z.-J, Wang B.-C, Zhan H.-Y, Wang Z.-Y. Asian J. Org. Chem. 2023; 12: e202300038
- 4 Hu LF, Li JZ, Zhang YY, Feng XM, Liu XH. Chem. Sci. 2022; 13: 4103
- 5 Tong JW, Li H, Zhu Y, Liu P, Sun PP. Green Chem. 2022; 24: 1995
- 6 Luo JY, Lin MZ, Xia DP, Du GF, Cai ZH, Dai B, He L. Org. Chem. Front. 2023; 10: 1224
- 7 Li Z, Wang K.-F, Zhao X, Ti HH, Liu X.-G, Wang HG. Nat. Commun. 2020; 11: 5036
- 8 Wang F, Chen Y, Rao WD, Shen S.-S, Wang S.-Y. Chem. Commun. 2022; 58: 12564
- 9 Hussain F, Dar TA, Ahmed QN. Org. Lett. 2022; 24: 5324
- 10 Khodyuk RG. D, Bai RL, Hamel E, Lourenco EM. G, Barbosa EG, Beatriz A, dos Santos ED, de Lima DP. Bioorg. Chem. 2020; 101: 104017
- 11 Smith M, Hunter R, Stellenboom N, Kusza DA, Parker MI, Hammouda AN. H, Jackson G, Kaschula CH. Biochim. Biophys. Acta 2016; 1860: 1439
- 12 Yu S.-W, Chen Z.-H, Chen Q, Lin S.-T, He J.-P, Tao G.-S, Wang Z.-Y. Chin. J. Org. Chem. 2022; 42: 2322
- 13a Wang X, Meng JP, Zhao DY, Tang S, Sun K. Chin. Chem. Lett. 2023; 34. 107736
- 13b Wang JJ, Liu XB, Yang SK, Yu A, Li JS, Liu HT, Li JW, Jia CM. Tetrahedron 2023; 139: 133434
- 13c Tian Y, Li X.-T, Liu J.-R, Cheng J, Gao A, Yang N.-Y, Li Z, Guo K.-X, Zhang W, Wen H.-T, Li Z.-L, Gu Q.-S, Hong X, Liu X.-Y. Nat. Chem. 2024; 16: in press
- 14 Chen Q, Huang YL, Wang XF, Wu JW, Yu GD. Org. Biomol. Chem. 2018; 16: 1713
- 15 Yadav N, Payra S, Moorthy JN. Asian J. Org. Chem. 2022; 11: e202200554
- 16 Huang C.-M, Li J, Wang S.-Y, Ji S.-J. Chin. Chem. Lett. 2020; 31: 1923
- 17 Lv YF, Luo JY, Ma YC, Dong Q, He L. Org. Chem. Front. 2021; 8: 2461
- 18 Mo Z.-Y, Swaroop TR, Tong W, Zhang Y.-Z, Tang H.-T, Pan Y.-M, Sun H.-B, Chen Z.-F. Green Chem. 2018; 20: 4428
- 19 Zhong ZJ, Xu P, Ma JF, Zhou AH. Tetrahedron 2021; 99: 132444
- 20 Liu LX, Luo B, Wang CM. Eur. J. Org. Chem. 2021; 5880
- 21 Kim J, Park S, Kim H, Kim J. Tetrahedron Lett. 2020; 61: 152112
- 22 Lv MT, Liu YF, Li K, Yang GP. Tetrahedron Lett. 2021; 65: 152757
- 23 Strehl J, Hilt G. Eur. J. Org. Chem. 2022; 35
- 24 Kalaramna P, Goswami A. Eur. J. Org. Chem. 2021; 5359
- 25 Sun SN, Li JC, Pan L, Liu HB, Guo YB. A, Gao ZH, Bi XJ. Org. Biomol. Chem. 2022; 20: 8885
- 26 Mondal S, Di Tommaso EM, Olofsson B. Angew. Chem. Int. Ed. 2022; 63: e202216296
- 27a Komendantova AS, Lyssenko KA, Zavarzin IV, Volkova YA. Org. Chem. Front. 2020; 7: 1640
- 27b Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. New J. Chem. 2021; 45: 16389
- 27c Monika C, Ram S, Sharma PK. Asian J. Org. Chem. 2023; 12: e202200616
- 28a Zhao P, Yu Z.-C, Wang L.-F, Zhou Y, Wu Y.-D, Ma YM, Wu A.-X. J. Org. Chem. 2022; 87: 15197
- 28b Liu FL, Mei L, Wang LT, Zhou Y, Tang KQ, Li T, Yi RN, Wei WT. Chem. Commun. 2023; 59: 6391
- 29 Arndt T, Raina A, Breugst M. Chem. Asian J. 2023; 18: e202201279
- 30 Liu YX, Miao W, Tang WJ, Xue D, Xiao JL, Wang C, Li CZ. Chem. Asian J. 2021; 16: 1725
- 31 Zhu Y.-S, Shi LL, Fu LR, Chen XR, Zhu XJ, Hao X.-Q, Song M.-P. Chin. Chem. Lett. 2022; 33: 1497
- 32 Hu C.-C, Tong C.-L, Zhang Y.-Y, Xu X.-H, Qing F.-L. Org. Lett. 2023; 25: 1035
- 33 Cao L, Luo S.-H, Jiang K, Hao Z.-F, Wang B.-W, Pang C.-M, Wang Z.-Y. Org. Lett. 2018; 20: 4754
- 34 Gong XX, Li XF, Xie WL, Wu J, Ye SQ. Org. Chem. Front. 2019; 6: 1863
- 35 Zheng Y, Qing F.-L, Huang YG, Xu X.-H. Adv. Synth. Catal. 2016; 358: 3477
- 36 Zhou GD, Xu X.-D, Chen G.-P, Wei W.-T, Guo ZY. Synlett 2018; 29: 2076
- 37a Tyagi A, Taneja N, Khan J, Hazra CK. Adv. Synth. Catal. 2023; 365: 1247
- 37b Zhang GF, Fan QK, Zhao YY, Wang HM, Ding CR. Synlett 2021; 32: 81
- 37c Pan XJ, Gao J, Liu J, Lai JY, Jiang HF, Yuan GQ. Green Chem. 2015; 17: 1400
- 37d Hübner S, de Vries JG, Farina V. Adv. Synth. Catal. 2016; 358: 1
- 37e An ZY, Zhao LB, Wu MZ, Ni JX, Qi ZJ, Yu GQ. Chem. Commun. 2017; 53: 11572
- 38 Zhao XN, Liu TX, Zhang GS. Asian J. Org. Chem. 2017; 6: 677
- 39 Sun Y, Abdukader A, Lu D, Zhang H, Liu C. Green Chem. 2017; 19: 1255
- 40 Guo Y, Wang G, Wei L, Wan J.-P. J. Org. Chem. 2019; 84: 2984
- 41 Zheng L, Zhou Z.-Z, He Y.-T, Li L.-H, Ma J.-W, Qiu Y.-F, Zhou P.-X, Liu X.-Y, Xu P.-F, Liang Y.-M. J. Org. Chem. 2016; 81: 66
- 42 CCDC 2282603 (2a) and 2282604 (2g) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures