Aktuelle Kardiologie 2024; 13(03): 203-214
DOI: 10.1055/a-2285-3481
Kurzübersicht

Kardiovaskuläre MRT in der Bewertung von Kardiomyopathien – ein aktueller Überblick

Cardiovascular MRI in the Evaluation of Cardiomyopathies – a Contemporary Overview
1   Research Institute of the McGill University Health Centre, Montreal, Kanada (Ringgold ID: RIN507266)
2   Klinik für Kardiologie, Angiologie und Pneumologie, Universtätsklinikum Heidelberg, Heidelberg, Deutschland (Ringgold ID: RIN9144)
› Author Affiliations

Zusammenfassung

Dieser Artikel beschreibt den klinischen Nutzen der kardiovaskulären Magnetresonanztomografie (Kardio-MRT) bei Patienten mit Kardiomyopathien. Die Kardio-MRT hat sich aufgrund ihrer hohen räumlichen Auflösung, 3-D-Fähigkeiten und der Abwesenheit ionisierender Strahlung als unverzichtbares Werkzeug bei der Beurteilung von Kardiomyopathien erwiesen und ist besonders geeignet für Diagnose und Management. Sie wird in Richtlinien für ihre Präzision bei der Diagnose und Differenzierung verschiedener Formen von Kardiomyopathien anerkannt und zur Beurteilung von Ventrikelvolumen, -masse und -funktion verwendet. MRT-Techniken wie T1- und T2-Mapping, Late Gadolinium Enhancement (LGE) und Protonenspektroskopie bieten Einblicke in akute und chronische Myokardschäden. Ihre Rolle bei der Risikostratifizierung wird durch die Korrelation von LGE-Präsenz und -Ausmaß mit dem Risiko schwerwiegender Komplikationen hervorgehoben. Die Entwicklung von hochauflösender Bildgebung, 4-D-Flow und künstlicher Intelligenz erweitert weiterhin ihr diagnostisches Potenzial. Insbesondere die akute Myokarditis, eine diagnostisch herausfordernde Erkrankung, profitiert von der nicht invasiven und inzwischen auch kontrastmittelfreien Visualisierung von Myokardödem und Nekrose durch die MRT.

Der Artikel beschreibt den spezifischen Nutzen der Kardio-MRT, insbesondere für die quantitative Beurteilung der Funktion und nicht invasive Charakterisierung des Myokardgewebes bei dilatativer Kardiomyopathie, hypertropher Kardiomyopathie, kardialer Amyloidose, Morbus Fabry, Eisenüberladung und Sarkoidose sowie stressinduzierter Kardiomyopathie und arrhythmogener ventrikulärer Kardiomyopathie. Auch neue MRT-Techniken und künstliche Intelligenz zur verbesserten Diagnose und Risikostratifizierung werden diskutiert.

Abstract

This article reviews the clinical utility of Cardiovascular Magnetic Resonance (CMR) in patients with suspected or known cardiomyopathies. CMR has become an indispensable tool in assessing cardiomyopathies due to its high spatial resolution, 3D capabilities, and absence of ionizing radiation, making it especially suitable for diagnosis and management. It is recognized in guidelines for its precision in diagnosing and differentiating various forms of cardiomyopathies and is used for ventricular volume, mass, and function assessment. MRI techniques such as T1 and T2 mapping, Late Gadolinium Enhancement (LGE), and Proton Spectroscopy offer insights into acute and chronic myocardial damage. Its role in risk stratification is highlighted by the correlation of LGE presence and extent with the risk of severe complications. The evolution of high-resolution imaging, 4D-flow, and artificial intelligence continues to expand its diagnostic potential.

Especially acute myocarditis, a challenging diagnostic condition, benefits from MRI’s non-invasive visualization of myocardial edema and necrosis.

The article describes the specific utility of CMR, especially for quantitatively assessing function and non-invasive myocardial tissue characterisation in dilated cardiomyopathy, hypertrophic cardiomyopathy, cardiac amyloidosis, Fabry disease, iron overload and sarcoidosis, as well as stress-induced cardiomyopathy and arrhythmogenic ventricular cardiomyopathy.

Novel MRI techniques and artificial intelligence for enhanced diagnosis and risk stratification are also discussed.

Was ist wichtig?

Die Kardio-MRT ist heute unverzichtbar in der Diagnostik der Kardiomyopathien. Neben der exakten quantitativen Auswertung von Morphologie, Volumina und Funktion ist es vor allem die Gewebecharakterisierung, die einen entscheidenden Vorteil der MRT gegenüber allen anderen bildgebenden Verfahren darstellt. Die MRT leistet dies nicht invasiv, ohne radioaktive Belastung und, falls benötigt, mit gut verträglichen Kontrastmitteln.

Ihr früher Einsatz kann die diagnostische Aufarbeitung von Patienten mit Verdacht auf Kardiomyopathie verkürzen, vergünstigen und qualitativ verbessern.



Publication History

Article published online:
29 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Rajiah PS, François CJ, Leiner T. Cardiac MRI: State of the art. Radiology 2023; 307: e223008
  • 2 Merlo M, Gagno G, Baritussio A. et al. Clinical application of CMR in cardiomyopathies: evolving concepts and techniques: A position paper of myocardial and pericardial diseases and cardiac magnetic resonance working groups of Italian society of cardiology. Heart Fail Rev 2023; 28: 77-95
  • 3 von Knobelsdorff-Brenkenhoff F, Pilz G, Schulz-Menger J. Representation of cardiovascular magnetic resonance in the AHA/ACC guidelines. J Cardiovasc Magn Reson 2017; 19: 70
  • 4 von Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology: a comprehensive summary and update. J Cardiovasc Magn Reson 2023; 25: 42
  • 5 Leiner T, Bogaert J, Friedrich MG. et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22: 76
  • 6 Ricci F, Khanji MY, Bisaccia G. et al. Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis. JAMA Cardiol 2023; 8: 662-673
  • 7 Moschetti K, Muzzarelli S, Pinget C. et al. Cost evaluation of cardiovascular magnetic resonance versus coronary angiography for the diagnostic work-up of coronary artery disease: application of the European Cardiovascular Magnetic Resonance registry data to the German, United Kingdom, Swiss, and United States health care systems. J Cardiovasc Magn Reson 2012; 14: 35
  • 8 Pandya A, Yu YJ, Ge Y. et al. Evidence-based cardiovascular magnetic resonance cost-effectiveness calculator for the detection of significant coronary artery disease. J Cardiovasc Magn Reson 2022; 24: 1
  • 9 Friedrich MG. The Future of Cardiovascular Magnetic Resonance Imaging. Eur Heart J 2017; 38: 1698-1701
  • 10 Eyre K, Lindsay K, Razzaq S. et al. Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development. Front Cardiovasc Med 2022; 9: 953823
  • 11 Ammirati E, Frigerio M, Adler ED. et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ Heart Fail 2020; 13: e007405
  • 12 Friedrich MG, Sechtem U, Schulz-Menger J. et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 2009; 53: 1475-1487
  • 13 Ferreira VM, Schulz-Menger J, Holmvang G. et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol 2018; 72: 3158-3176
  • 14 Kotanidis CP, Bazmpani M, Haidich AB. et al. Diagnostic Accuracy of Cardiovascular Magnetic Resonance in Acute Myocarditis: A Systematic Review and Meta-Analysis. JACC Cardiovasc Imaging 2018; 11: 1583-1590
  • 15 Li S, Duan X, Feng G. et al. Multiparametric cardiovascular magnetic resonance in acute myocarditis: comparison of 2009 and 2018 Lake Louise Criteria with endomyocardial biopsy confirmation. Front Cardiovasc Med 2021; 8: 739892
  • 16 Sinigiani G, De Michieli L, De Conti G. et al. Cardiac magnetic resonance-detected acute myocardial edema as predictor of favourable prognosis: A comprehensive review. J Cardiovasc Dev Dis 2023; 10: 319
  • 17 Gräni C, Eichhorn C, Bière L. et al. Prognostic Value of Cardiac Magnetic Resonance Tissue Characterization in Risk Stratifying Patients With Suspected Myocarditis. J Am Coll Cardiol 2017; 70: 1964-1976
  • 18 Bohbot Y, Sanguineti F, Renard C. et al. Associated factors and clinical implications of dynamic changes in late gadolinium enhancement after acute myocarditis. Eur Heart J Cardiovasc Imaging 2023; 16: 859-861
  • 19 Kerneis M, Cohen F, Combes A. et al. Rationale and design of the ARAMIS trial: Anakinra versus placebo, a double blind randomized controlled trial for the treatment of acute myocarditis. Arch Cardiovasc Dis 2023; 116: 460-466
  • 20 Shelkovnikova TA, Maksimova AS, Ryumshina NI. et al. Transformative Effect of COVID-19 Pandemic on Magnetic Resonance Imaging Services in One Tertiary Cardiovascular Center. J Imaging 2023; 9: 108
  • 21 Petersen SE, Friedrich MG, Leiner T. et al. Cardiovascular Magnetic Resonance for Patients With COVID-19. JACC Cardiovasc Imaging 2022; 15: 685-699
  • 22 Patriki D, Gresser E, Manka R. et al. Approximation of the Incidence of Myocarditis by Systematic Screening With Cardiac Magnetic Resonance Imaging. JACC Heart Fail 2018; 6: 573-579
  • 23 O’Brien AT, Gil KE, Varghese J. et al. T2 mapping in myocardial disease: a comprehensive review. J Cardiovasc Magn Reson 2022; 24: 33
  • 24 Bustin A, Witschey WRT, van Heeswijk RB. et al. Magnetic resonance myocardial T1ρ mapping: Technical overview, challenges, emerging developments, and clinical applications. J Cardiovasc Magn Reson 2023; 25: 34
  • 25 Kranzusch R, Aus dem Siepen F, Wiesemann S. et al. Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: Normal behavior and validation in patients with amyloidosis. J Cardiovasc Magn Reson 2020; 22: 6
  • 26 Razzaq S, Haririsanati L, Eyre K. et al. Inter-Scanner Comparability of Z-scores for Native Myocardial T1 and T2 Mapping. J Cardiovasc Magn Res 2024; 26: 100004
  • 27 Reichart D, Magnussen C, Zeller T. et al. Dilated cardiomyopathy: from epidemiologic to genetic phenotypes: A translational review of current literature. J Intern Med 2019; 286: 362-372
  • 28 Khan T, Selvakumar D, Trivedi S. et al. The value of endomyocardial biopsy in diagnosis and guiding therapy. Pathology 2017; 49: 750-756
  • 29 McCrohon JA, Moon JCC, Prasad SK. et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003; 108: 54-59
  • 30 Assomull RG, Prasad SK, Lyne J. et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 2006; 48: 1977-1985
  • 31 Nakamori S, Dohi K, Ishida M. et al. Native T1 Mapping and Extracellular Volume Mapping for the Assessment of Diffuse Myocardial Fibrosis in Dilated Cardiomyopathy. JACC Cardiovasc Imaging 2018; 11: 48-59
  • 32 Snel GJH, van den Boomen M, Hernandez LM. et al. Cardiovascular magnetic resonance native T2 and T2* quantitative values for cardiomyopathies and heart transplantations: a systematic review and meta-analysis. J Cardiovasc Magn Reson 2020; 22: 34
  • 33 Gao Y, Wang HP, Liu MX. et al. Early detection of myocardial fibrosis in cardiomyopathy in the absence of late enhancement: role of T1 mapping and extracellular volume analysis. Eur Radiol 2023; 33: 1982-1991
  • 34 Lota AS, Tsao A, Owen R. et al. Prognostic Significance of Nonischemic Myocardial Fibrosis in Patients With Normal LV Volumes and Ejection-Fraction. JACC Cardiovasc Imaging 2021; 14: 2353-2365
  • 35 Gibbons Kroeker CA, Adeeb S, Shrive NG. et al. Compression induced by RV pressure overload decreases regional coronary blood flow in anesthetized dogs. Am J Physiol Heart Circ Physiol 2006; 290: H2432-H2438
  • 36 Cabanis P, Magat J, Rodriguez-Padilla J. et al. Cardiac structure discontinuities revealed by ex-vivo microstructural characterization. A focus on the basal inferoseptal left ventricle region. J Cardiovasc Magn Reson 2023; 25: 78
  • 37 Vermes E, Carbone I, Friedrich MG. et al. Patterns of myocardial late enhancement: typical and atypical features. Arch Cardiovasc Dis 2012; 105: 300-308
  • 38 Florian A, Ludwig A, Stubbe-Dräger B. et al. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. J Cardiovasc Magn Reson 2015; 17: 40
  • 39 Kübler J, Burgstahler C, Brendel JM. et al. Cardiac MRI findings to differentiate athlete’s heart from hypertrophic (HCM), arrhythmogenic right ventricular (ARVC) and dilated (DCM) cardiomyopathy. Int J Cardiovasc Imaging 2021; 37: 2501-2515
  • 40 Abbasi SA, Ertel A, Shah RV. et al. Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients. J Cardiovasc Magn Reson 2013; 15: 89
  • 41 Maron BJ, Desai MY, Nishimura RA. et al. Management of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79: 390-414
  • 42 Greulich S, Seitz A, Herter D. et al. Long-term risk of sudden cardiac death in hypertrophic cardiomyopathy: a cardiac magnetic resonance outcome study. Eur Heart J Cardiovasc Imaging 2021; 22: 732-741
  • 43 Schulz-Menger J, Strohm O, Waigand J. et al. The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation 2000; 101: 1764-1766
  • 44 Heydari B, Satriano A, Jerosch-Herold M. et al. 3-Dimensional Strain Analysis of Hypertrophic Cardiomyopathy: Insights From the NHLBI International HCM Registry. JACC Cardiovasc Imaging 2023; 16: 478-491
  • 45 Raman B, Tunnicliffe EM, Chan K. et al. Association Between Sarcomeric Variants in Hypertrophic Cardiomyopathy and Myocardial Oxygenation: Insights From a Novel Oxygen-Sensitive Cardiovascular Magnetic Resonance Approach. Circulation 2021; 144: 1656-1658
  • 46 Garcia-Pavia P, Rapezzi C, Adler Y. et al. Diagnosis and treatment of cardiac amyloidosis. A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur J Heart Fail 2021; 23: 512-526
  • 47 Martinez-Naharro A, Treibel TA, Abdel-Gadir A. et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. J Am Coll Cardiol 2017; 70: 466-477
  • 48 Chen W, Doeblin P, Al-Tabatabaee S. et al. Synthetic extracellular volume in cardiac magnetic resonance without blood sampling: A reliable tool to replace conventional extracellular volume. Circ Cardiovasc Imaging 2022; 15: e013745
  • 49 Weberling L, Ochs A, Benovoy M. et al. Machine Learning for Automated Identification and Categorization of Cardiac Amyloidosis – a Multi-Center CMR Study. Unpublished data. Brief title: CMR Machine Learning in Cardiac Amyloidosis. n.d..
  • 50 Ioannou A, Patel RK, Martinez-Naharro A. et al. Tracking Treatment Response in Cardiac Light-Chain Amyloidosis With Native T1 Mapping. JAMA Cardiol 2023; 8: 848-852
  • 51 Lyon AR, Citro R, Schneider B. et al. Pathophysiology of Takotsubo Syndrome: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77: 902-921
  • 52 Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P. et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 2011; 306: 277-286
  • 53 Corrado D, Link MS, Calkins H. Arrhythmogenic Right Ventricular Cardiomyopathy. N Engl J Med 2017; 376: 61-72
  • 54 Marcus FI, McKenna WJ, Sherrill D. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 2010; 121: 1533-1541
  • 55 Corrado D, Perazzolo Marra M, Zorzi A. et al. Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria. Int J Cardiol 2020; 319: 106-114
  • 56 Corrado D, Anastasakis A, Basso C. et al. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int J Cardiol 2024; 395: 131447
  • 57 Anderson LJ, Holden S, Davis B. et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22: 2171-2179
  • 58 Menacho KD, Ramirez S, Perez A. et al. Improving cardiovascular magnetic resonance access in low- and middle-income countries for cardiomyopathy assessment: rapid cardiovascular magnetic resonance. Eur Heart J 2022; 43: 2496-2507
  • 59 Modell B, Khan M, Darlison M. et al. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008; 10: 42
  • 60 Salih A, Boscolo Galazzo I, Gkontra P. et al. Explainable artificial intelligence and cardiac imaging: Toward more interpretable models. Circ Cardiovasc Imaging 2023; 16: e014519
  • 61 Penso M, Babbaro M, Moccia S. et al. Cardiovascular magnetic resonance images with susceptibility artifacts: artificial intelligence with spatial-attention for ventricular volumes and mass assessment. J Cardiovasc Magn Reson 2022; 24: 62
  • 62 Abdulkareem M, Kenawy AA, Rauseo E. et al. Predicting post-contrast information from contrast agent free cardiac MRI using machine learning: Challenges and methods. Front Cardiovasc Med 2022; 9: 894503
  • 63 Zhang Q, Burrage MK, Shanmuganathan M. et al. Artificial Intelligence for Contrast-free MRI: Scar Assessment in Myocardial Infarction Using Deep Learning-based Virtual Native Enhancement (VNE). Circulation 2022; 146: 1492-1503
  • 64 Barbaroux H, Kunze KP, Neji R. et al. Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks. J Cardiovasc Magn Reson 2023; 25: 16
  • 65 Wang ZC, Fan ZZ, Liu XY. et al. Deep learning for discrimination of hypertrophic cardiomyopathy and hypertensive heart disease on MRI native T1 maps. J Magn Reson Imaging 2024; 59: 837-848
  • 66 Fahmy AS, Rowin EJ, Jaafar N. et al. Radiomics of Late Gadolinium Enhancement Reveals Prognostic Value of Myocardial Scar Heterogeneity in Hypertrophic Cardiomyopathy. JACC Cardiovasc Imaging 2024; 17: 16-27
  • 67 Christodoulou AG, Shaw JL, Nguyen C. et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng 2018; 2: 215-226
  • 68 Cavallo AU, Liu Y, Patterson A. et al. CMR Fingerprinting for Myocardial T1, T2, and ECV Quantification in Patients With Nonischemic Cardiomyopathy. JACC Cardiovasc Imaging 2019; 12: 1584-1585