Synthesis
DOI: 10.1055/a-2302-5824
short review

Stepwise Carbene Transfer Reaction with Alkenes beyond Cyclopropanation

Minghan Yao
a   College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, P. R. of China
b   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Shanliang Dong
b   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
,
Abdulla Yusuf
a   College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, P. R. of China
,
Xinfang Xu
b   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China
› Author Affiliations
Support for this research from the National Natural Science Foundation of China (22371309), Guangdong Provincial Key R & D Programme (21202107201900002), The Key Laboratory Open Project of Xinjiang Uygur Autonomous Region (2021D04018) and The Key Laboratory Open Project of Xinjiang Native Medicinal and Edible Plant Resources Chemistry (KSUZDSYS202103) is greatly acknowledged.


Abstract

Metal carbene transfer reactions have been well-established as an indispensable tool in modern organic synthesis, especially in the construction of C–C and C–X bonds with high efficiency and selectivity. Among these, stepwise carbene transfer reaction with alkenes beyond classical cyclopropanation reaction has been demonstrated as a practical method for the effective olefinic C–H/C–C bond functionalization. This review highlights the recent achievements in this area for the direct C–C bond formation involving metal carbene species with alkenes through a through stepwise reaction pathway. The content of this review is organized into three general categories according to the types of the reactions, including (i) direct nucleophilic addition of alkenes with metal carbene species, (ii) cross-coupling reaction via an alkenylic C–H bond activation and migration insertion sequence, and (iii) catalytic coupling reaction involving radical intermediate. Considering this rapidly evolving field, detailed reaction mechanism, current limitations, and future research directions are discussed.

1 Introduction

2 Nucleophilic Addition of Alkenes to Metal Carbene Species

2.1 Using Polarized Alkenes

2.2 Using Unactivated Alkenes

2.3 Cascade Reactions

3 Cross-Coupling Reaction Involving Metal Carbene Migratory Insertion Process

4 Coupling Reaction Involving Radical Intermediate

5 Conclusions and Perspectives



Publication History

Received: 13 March 2024

Accepted after revision: 09 April 2024

Accepted Manuscript online:
09 April 2024

Article published online:
17 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang J, Che C.-M, Doyle MP. Transition Metal-Catalyzed Carbene Transformations . Wiley; New York: 2021
    • 3a Berger KE, Martinez RJ, Zhou J, Uyeda C. J. Am. Chem. Soc. 2023; 145: 9441
    • 3b Qian D, Zhang J. Chem. Soc. Rev. 2015; 44: 677
    • 3c Coelho PS, Brustad EM, Kannan A, Arnold FH. Science 2013; 339: 307
    • 3d Lee W.-CC, Wang D.-S, Zhu Y, Zhang XP. Nat. Chem. 2023; 15: 1569
    • 4a Chen K, Arnold FH. J. Am. Chem. Soc. 2020; 142: 6891
    • 4b Zhang X, Tian C, Wang Z, Sivaguru P, Nolan SP, Bi X. ACS Catal. 2021; 11: 8527
  • 5 Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 6a Alonso ME, Fernandez R. Tetrahedron 1989; 45: 3313
    • 6b Alonso ME, Del Carmen Garcia M. J. Org. Chem. 1985; 50: 988
  • 7 McLarney BD, Cavitt MA, Donnell TM, Musaev DG, France S. Chem. Eur. J. 2017; 23: 1129
    • 8a Yang W, Yang Z, Chen L, Lu Y, Zhang C, Su Z, Liu X, Feng X. Chin. Chem. Lett. 2023; 34: 107791
    • 8b Guerra Faura G, Nguyen T, France S. J. Org. Chem. 2021; 86: 10088
    • 8c Tan WW, Yoshikai N. J. Org. Chem. 2016; 81: 5566
    • 8d Aponte-Guzman J, Phun LH, Cavitt MA, Taylor JE. Jr, Davy JC, France S. Chem. Eur. J. 2016; 22: 10405
    • 9a Zhao Y, Duan Q, Zhou Y, Yao Q, Li Y. Org. Biomol. Chem. 2016; 14: 2177
    • 9b Yun SH, Xia L, Kim SH, Lee YR. Asian J. Org. Chem. 2016; 5: 1142
    • 10a Yan M, Zhao W.-J, Huang D, Ji S.-J. Tetrahedron Lett. 2004; 45: 6365
    • 10b Zhao W.-J, Yan M, Huang D, Ji S.-J. Tetrahedron 2005; 61: 5585
    • 11a Wang X, Zhou Y, Qiu L, Yao R, Zheng Y, Zhang C, Bao X, Xu X. Adv. Synth. Catal. 2016; 358: 1571
    • 11b Wagh SB, Liu RS. Chem. Commun. 2015; 51: 15462
    • 11c Dong K, Zheng H, Su Y, Humeidi A, Arman H, Xu X, Doyle MP. ACS Catal. 2021; 11: 4712
  • 12 Zhao F, Li N, Zhang T, Han ZY, Luo SW, Gong LZ. Angew. Chem. Int. Ed. 2017; 56: 3247
  • 13 Qin C, Boyarskikh V, Hansen JH, Hardcastle KI, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2011; 133: 19198
  • 14 Su YL, Liu GX, Liu JW, Tram L, Qiu H, Doyle MP. J. Am. Chem. Soc. 2020; 142: 13846
  • 15 Zhou Q, Li S, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2017; 56: 16013
  • 16 Vasu D, Hung HH, Bhunia S, Gawade SA, Das A, Liu RS. Angew. Chem. Int. Ed. 2011; 50: 6911
  • 17 Wang Y, McGonigal PR, Herle B, Besora M, Echavarren AM. J. Am. Chem. Soc. 2014; 136: 801
    • 18a Zhu D, Chen L, Zhang H, Ma Z, Jiang H, Zhu S. Angew. Chem. Int. Ed. 2018;  57: 12405
    • 18b Chen L, Liu Z, Zhu S. Org. Biomol. Chem. 2018; 16: 8884
  • 19 Pei C, Rong GW, Yu ZX, Xu XF. J. Org. Chem. 2018; 83: 13243
    • 20a Shi CY, Han T, Hong FL, Ye LW, Sun Q, Teng MY. Org. Lett. 2023; 25: 1525
    • 20b Wang H, Cai S, Ai W, Xu X, Li B, Wang B. Org. Lett. 2020; 22: 7255
    • 20c Zheng Y, Mao J, Weng Y, Zhang X, Xu X. Org. Lett. 2015; 17: 5638
  • 21 Barluenga J, Lonzi G, Tomas M, Lopez LA. Chem. Eur. J. 2013; 19: 1573
  • 22 Cui X.-Y, Ye Z.-T, Wu H.-H, Ji C.-G, Zhou F, Zhou J. ACS Catal. 2023; 13: 1554
    • 23a Sadaphal VA, Liu R.-S. J. Org. Chem. 2023; 88: 14899
    • 23b Chen C.-N, Cheng W.-M, Wang J.-K, Chao T.-H, Cheng M.-J, Liu R.-S. Angew. Chem. Int. Ed. 2021; 60: 4479
  • 24 Hong FL, Chen YB, Ye SH, Zhu GY, Zhu X.-Q, Lu X, Liu RS, Ye LW. J. Am. Chem. Soc. 2020; 142: 7618
  • 25 Zhang C, Hong K, Pei C, Zhou S, Hu W, Hashmi AS. K, Xu X. Nat. Commun. 2021; 12: 1182
  • 26 Dong S, Hong K, Zhang Z, Huang J, Xie X, Yuan H, Hu W, Xu X. Angew. Chem. Int. Ed. 2023; 62: e202302371
  • 27 Yin X, Mato M, Echavarren AM. Angew. Chem. Int. Ed. 2017; 56: 14591
  • 28 Halskov KS, Roth HS, Ellman JA. Angew. Chem. Int. Ed. 2017; 56: 9183
  • 29 Cai H, Thombal RS, Li X, Lee YR. Adv. Synth. Catal. 2019; 361: 4022
  • 30 Ma B, Wu P, Wang X, Wang Z, Lin HX, Dai HX. Angew. Chem. Int. Ed. 2019; 58: 13335
  • 31 Jiang Y, Li P, Zhao J, Liu B, Li X. Org. Lett. 2020; 22: 7475
  • 32 Epping RF. J, Vesseur D, Zhou M, de Bruin B. ACS Catal. 2023; 13: 5428
    • 33a Lee W.-CC, Wang J, Zhu Y, Zhang XP. J. Am. Chem. Soc. 2023; 145: 11622
    • 33b Ke J, Lee W.-CC, Wang X, Wang Y, Wen X, Zhang XP. J. Am. Chem. Soc. 2022; 144: 2368
  • 34 Giedyk M, Goliszewska K, Proinsias Kó, Gryko D. Chem. Commun. 2016; 52: 1389
  • 35 Das G, Chirila A, Tromp M, Reek JN, Bruin B. J. Am. Chem. Soc. 2016; 138: 8968