Synlett
DOI: 10.1055/a-2310-0924
letter

Ni(OTf)2-Catalyzed Michael Addition Reactions of 4-Hydroxycoumarins to α,β-Unsaturated 2-Acyl Imidazoles

Honghong Wang
,
Fan Gong
,
Ping Xue
,
Helin Lu
,
Xiaobo Wang
,
Jun Gong
This work was supported by the National Natural Science Foundation of China (Grant No. 22001063) and the Scientific Innovation Team of Hubei University of Science and Technology (Grant No. 2023T11).


Abstract

An efficient Michael addition of 4-hydroxycoumarins to α,β-unsaturated 2-acyl imidazoles catalyzed by Ni(OTf)2 as a Lewis acid has been developed. A series of 4-hydroxycoumarin derivatives were obtained in excellent yields (up to 96%) with a 2 mol% catalyst loading under mild conditions. Additionally, when a chiral-at-metal rhodium complex was used as the catalyst, moderate enantioselectivity was observed (74% ee).

Supporting Information



Publication History

Received: 24 March 2024

Accepted after revision: 20 April 2024

Accepted Manuscript online:
20 April 2024

Article published online:
14 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews on coumarin, see:
    • 1a Murray RD. H, Méndez J, Brown SA. The Natural Coumarins: Occurrence, Chemistry, and Biochemistry 1982
    • 1b Manolov I, Danchev ND. Eur. J. Med. Chem. 1995; 30: 531
    • 1c Li H.-Y, Boswell GA. Tetrahedron Lett. 1996; 37: 1551
    • 1d The Handbook of Natural Flavonoids . Harborne JB, Baxter H. Wiley; Chichester: 1999
    • 1e Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Curr. Pharm. Des. 2004; 10: 3813
    • 1f Keri RS, Sasidhar BS, Nagaraja BM, Santos MA. Eur. J. Med. Chem. 2015; 100: 257

      For selected reviews, see:
    • 2a Ufer M. Clin. Pharmacokinet. 2005; 44: 1227
    • 2b Visser LE, van Schaik RH. N, van Vliet M, Trienekens PH, De Smet PA. G. M, Vulto AG, Hofman A, van Duijn CM, Stricker BH. C. Clin. Pharmacol. Ther. 2005; 77: 479
    • 2c Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenomics 2010; 11: 493
    • 2d Kasperkiewicz K, Ponczek MB, Owczarek J, Guga P, Budzisz E. Molecules 2020; 25: 1465
  • 3 Meinertz T, Kasper W, Kahl C, Jähnchen E. Br. J. Clin. Pharmacol. 1978; 5: 187
    • 4a Maja M, Melita L, Marija K. Curr. Org. Chem. 2020; 24: 4
    • 4b Komal C, Jeevan Lal P, Mahapatra SP, Santhosh P. Curr. Org. Chem. 2020; 24: 2601
  • 5 Halland N, Velgaard T, Jørgensen KA. J. Org. Chem. 2003; 68: 5067
    • 6a Halland N, Hansen T, Jørgensen KA. Angew. Chem. Int. Ed. 2003; 42: 4955
    • 6b Kim H, Yen C, Preston P, Chin J. Org. Lett. 2006; 8: 5239
    • 6c Xie J.-W, Yue L, Chen W, Du W, Zhu J, Deng J.-G, Chen Y.-C. Org. Lett. 2007; 9: 413
    • 6d Kristensen TE, Vestli K, Hansen FK, Hansen T. Eur. J. Org. Chem. 2009; 5185
    • 6e Dong Z, Wang L, Chen X, Liu X, Lin L, Feng X. Eur. J. Org. Chem. 2009; 5192
    • 6f Zhu X, Lin A, Shi Y, Guo J, Zhu C, Cheng Y. Org. Lett. 2011; 13: 4382
    • 6g Xu D.-Q, Wang Y.-F, Zhang W, Luo S.-P, Zhong A.-G, Xia A.-B, Xu Z.-Y. Chem. Eur. J. 2010; 16: 4177
    • 6h Chen X.-K, Zheng C.-W, Zhao S.-L, Chai Z, Yang Y.-Q, Zhao G, Cao W.-G. Adv. Synth. Catal. 2010; 352: 1648
    • 6i Gao Y, Ren Q, Wang L, Wang J. Chem. Eur. J. 2010; 16: 13068
    • 6j Modrocká V, Veverková E, Mečiarová M, Šebesta R. J. Org. Chem. 2018; 83: 13111
    • 6k Tukhvatshin RS, Kucherenko AS, Nelyubina YV, Zlotin SG. J. Org. Chem. 2019; 84: 13824
    • 6l Ma Z, Wang C, Liu X, Chen X, Tao J, Lv Q. Chirality 2022; 34: 325
    • 6m Rueping M, Merino E, Sugiono E. Adv. Synth. Catal. 2008; 350: 2127
    • 6n Yang H.-M, Gao Y.-H, Li L, Jiang Z.-Y, Lai G.-Q, Xia C.-G, Xu L.-W. Tetrahedron Lett. 2010; 51: 3836
    • 6o Ray SK, Singh PK, Molleti N, Singh VK. J. Org. Chem. 2012; 77: 8802
    • 6p Dong Z, Feng J, Cao W, Liu X, Lin L, Feng X. Tetrahedron Lett. 2011; 52: 3433
    • 6q Liu S, Xu Z.-H, Wang X, Zhu H.-R, Wang M.-C. J. Org. Chem. 2019; 84: 13881
    • 6r Wang X.-B, Tian Y, Zhou L, Xie M.-S, Qu G.-R, Guo H.-M. Org. Lett. 2022; 24: 3861

      For selected examples, see:
    • 7a Huo H, Fu C, Harms K, Meggers E. J. Am. Chem. Soc. 2014; 136: 2990
    • 7b Shen X, Huo H, Wang C, Zhang B, Harms K, Meggers E. Chem. Eur. J. 2015; 21: 9720
    • 7c Huo H, Harms K, Meggers E. J. Am. Chem. Soc. 2016; 138: 6936
    • 7d Huang X, Quinn TR, Harms K, Webster RD, Zhang L, Wiest O, Meggers E. J. Am. Chem. Soc. 2017; 139: 9120
    • 7e Wei J, Cao B, Tse C.-W, Chang X.-Y, Zhou C.-Y, Che C.-M. Chem. Sci. 2020; 11: 684
    • 7f Duchemin N, Cattoen M, Gayraud O, Anselmi S, Siddiq B, Buccafusca R, Daumas M, Ferey V, Smietana M, Arseniyadis S. Org. Lett. 2020; 22: 5995
    • 7g Gill M, Das A, Singh VK. Org. Lett. 2022; 24: 5629
    • 7h Huang C, Zhao Z, Li S, Zhao J, Wu L, Gu C. Org. Chem. Front. 2022; 9: 1932
    • 7i Ren Y, Lu S, He L, Zhao Z, Li S.-W. Org. Lett. 2022; 24: 2585
    • 7j Chen X, Zhao Y, Huang C, Zhao Z, Zhao W, Li S.-W. Chem. Commun. 2024; 60: 236
    • 7k Zhao Y, Ji X, Tian X, Zhao Z, Li S.-W. Adv. Synth. Catal. 2024; 366: 1590

      For our recent works, see:
    • 8a Yang J, Ming S, Yao G, Yu H, Du Y, Gong J. Org. Chem. Front. 2022; 9: 2759
    • 8b Ming S, Yang J, Wu S, Yao G, Xiong H, Du Y, Gong J. Org. Chem. Front. 2022; 9: 5147
    • 9a Wang C, Chen L.-A, Huo H, Shen X, Harms K, Gong L, Meggers E. Chem. Sci. 2015; 6: 1094
    • 9b Huang X, Luo S, Burghaus O, Webster RD, Harms K, Meggers E. Chem. Sci. 2017; 8: 7126
    • 10a Zhang B, Han F, Wang L, Li D, Yang D, Yang X, Yang J, Li X, Zhao D, Wang R. Chem. Eur. J. 2015; 21: 17234
    • 10b Rout S, Das A, Singh VK. Chem. Commun. 2017; 53: 5143
    • 10c Liu H, Ma L, Zhou R, Chen X, Fang W, Wu J. ACS Catal. 2018; 8: 6224
    • 10d Rout S, Das A, Singh VK. J. Org. Chem. 2018; 83: 5058
    • 10e Gutiérrez de Souza C, Bersellini M, Roelfes G. ChemCatChem 2020; 12: 3190
    • 10f Duchemin N, Cattoen M, Gayraud O, Anselmi S, Siddiq B, Buccafusca R, Daumas M, Ferey V, Smietana M, Arseniyadis S. Org. Lett. 2020; 22: 5995
    • 10g Rai P, Waiba S, Maji K, Sahoo D, Maji B. Org. Lett. 2021; 23: 8888
    • 10h Wei J, Huang J.-S, Che C.-M. Org. Lett. 2021; 23: 6993
    • 10i Chen X, An Y, Du G, Zhao Y, He L, Zhao J, Li S.-W. J. Org. Chem. 2022; 87: 5497
    • 10j Lu S, Zhao Z, Ren Y, Du G, Zhao J, Li S.-W. Org. Chem. Front. 2022; 9: 3446
    • 10k Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu Y.-D, Feng X. J. Am. Chem. Soc. 2023; 145: 4808
  • 11 4-Hydroxy-3-[3-(1-methyl-1H-imidazol-2-yl)-3-oxo-1-phenylpropyl]-2H-chromen-2-one (3a); Typical Procedure A dried 25 mL Schlenk tube was charged with 2-acyl imidazole 1a (0.20 mmol), 4-hydroxycoumarin (2a; 0.22 mmol), and Ni(OTf)2 (1.4 mg, 2 mol%). The tube was then purged with argon and DCE (0.8 mL) was added. The resulting mixture was stirred at 30 °C for 12 h under argon until the reaction was complete (TLC), then cooled to r.t. The resulting mixture was purified by flash column chromatography [silica gel, CH2Cl2–MeOH (100:1 to 20:1)]; to afford a white solid; yield: 71.6 mg (95%); mp 184.0–185.7 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.01 (dd, J = 8.0, 1.6 Hz, 1 H), 7.61–7.56 (m, 1 H), 7.46 (s, 1 H), 7.38 (d, J = 7.6 Hz, 2 H), 7.34 (t, J = 8.0 Hz, 2 H), 7.24 (t, J = 8.0 Hz, 2 H), 7.15 (d, J = 7.6 Hz, 1 H), 7.11 (s, 1 H), 5.09 (t, J = 7.2 Hz, 1 H), 4.20 (dd, J = 17.2, 6.8 Hz, 1 H), 3.89 (d, J = 8.0 Hz, 1 H), 3.84 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 191.23, 162.20, 160.91, 152.54, 143.28, 142.95, 132.27, 128.99, 128.43, 127.98, 126.38, 124.22, 123.81, 116.68, 116.60, 108.53, 40.99, 35.99, 35.61. HRMS (ESI): m/z [M + H]+ calcd for C22H19N2O4: 375.1339; found: 375.1342.