Synlett, Table of Contents Synlett 2024; 35(20): 2391-2396DOI: 10.1055/a-2324-8899 letter Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu Enantioselective Synthesis of Substituted Dihydropyrans by Organocatalyst-Mediated Domino Michael/Enolization/Acetalization Reactions Yujiro Hayashi ∗ , Xiaolei Han , William R. Hack Recommend Article Abstract Buy Article All articles of this category This letter is dedicated to Prof. Brindaban C. Ranu on the occasion of his 75th birthday. Abstract A highly enantioselective synthetic method for 3,4-trans-dihydropyrans was developed by the reaction of α-acyl-β-aryl-substituted acrylonitrile and aldehyde catalyzed by diphenylprolinol silyl ether. This is an asymmetric domino reaction via a catalytic Michael reaction/enolization/acetalization. Key words Key wordsdihydropyrans - asymmetric synthesis - organocatalysis - diphenylprolinol silyl ether - domino reaction - α-acyl-β-aryl-substituted acrylonitrile Full Text References References and Notes 1a Waghorn SL, Goa KL. Drugs 1998; 55: 721 1b Duwn CJ, Goa KL. Drugs 1999; 58: 761 2a Bailleul F, Leveau AM, Durand M. J. Nat. Prod. 1981; 44: 573 2b Garcia J, Mpondo EM, Kaouadji M. Phytochemistry 1990; 29: 3353 3a Battersby AR, Burnett AR, Parsons PG. J. Chem. Soc. C 1969; 1187 3b Bisset NG, Choudhury AK. Phytochemistry 1974; 13: 265 3c Tietze LF. Angew. Chem., Int. Ed. Engl. 1983; 22: 828 4 Desimoni G, Faita G, Quadrelli P. Chem. Rev. 2018; 118: 2080 Selected reviews on organocatalysis: 5a Asymmetric Organocatalysis 1 . List B. Thieme; Stuttgart: 2012 5b Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013 6 Juhl K, Jørgensen KA. Angew. Chem. Int. Ed. 2003; 42: 1498 7 For a review, see: Laina-Martin V, Fernández-Salas JA, Alemán J. Chem. Eur. J. 2021; 27: 12509 For reviews, see: 8a Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167 8b Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492 8c Pellissier H. Adv. Synth. Catal. 2012; 354: 237 8d Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390 8e Hayashi Y. Chem. Sci. 2016; 7: 866 8f Hayashi Y. J. Org. Chem. 2021; 86: 1 8g Hayashi Y. Acc. Chem. Res. 2021; 54: 1385 9a Franke PT, Richter B, Jørgensen KA. Chem. Eur. J. 2008; 14: 6317 9b Zhu M.-K, Wei Q, Gong L.-Z. Adv. Synth. Catal. 2008; 350: 1281 9c Niu Z.-Q, He X.-W, Shang Y.-J. Tetrahedron: Asymmetry 2014; 25: 796 9d Guevara-Pulido JO, Andrés JM, Pedrosa R. Eur. J. Org. Chem. 2014; 8072 10a Palomo C, Mielgo A. Angew. Chem. Int. Ed. 2006; 45: 7876 10b Mielgo A, Palomo C. Chem. Asian J. 2008; 3: 922 10c Xu L.-W, Li L, Shi Z.-H. Adv. Synth. Catal. 2010; 352: 243 10d Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248 10e Gotoh H, Hayashi Y. In Sustainable Catalysis . Dunn J, Hii KK, Krische MJ, Williams MT. Wiley; Hoboken: 2013: 287 10f Donslund BS, Johansen TK, Poulsen PH, Halskov KS, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860 10g Reyes-Rodriguez GJ, Rezayee NM, Vidal-Albalat A, Jørgensen KA. Chem. Rev. 2019; 119: 4221 11a Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212 11b Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794 12 Wang J, Yu F, Zhang X, Ma D. Org. Lett. 2008; 10: 2561 13 Das U, Huang C.-H, Lin W.-W. Chem. Commun. 2012; 48: 5590 14 Tilekar AR, Jagdale AR, Kukreja G, Shenoy GG, Sinha N. Tetrahedron: Asymmetry 2017; 28: 153 15 Vicario JL, Badia D, Carrillo L. Synthesis 2007; 2065 16a Hayashi Y, Odoh AS, Kranidiotis-Hisatomi N. ChemCatChem 2020; 12: 2412 16b Sakamoto D, Hayashi Y. Chem. Lett. 2018; 47: 833 17a Hayashi Y, Itoh T, Aratake S, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 2082 17b Hayashi Y, Itoh T, Ohkubo M, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 4722 17c Hayashi Y, Okano T, Itoh T, Urushima T, Ishikawa H, Uchimaru T. Angew. Chem. Int. Ed. 2008; 47: 9053 17d Yang JW, Chandler C, Stadler M, Kampen D, List B. Nature 2008; 452: 453 17e García-García P, Ladépêche A, Halder R, List B. Angew. Chem. Int. Ed. 2008; 47: 4719 17f Nori V, Sinibaldi A, Giorgianni G, Pesciaioli F, Donato FD, Cocco E, Biancolillo A, Landa A, Carlone A. Chem. Eur. J. 2022; 28: e202104524 18a Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155 18b Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277 19 The enantiomeric excess of 8a and 8b would be the same as that of 4aa (97% ee), because there is no racemization step. 20 trans-3aa was prepared by the reduction of lactone trans-6, which was separated from lactone cis-6. See the Supporting Information for details. 21 Enantiomers could not be separated by HPLC by the reported chiral column (ref. 13). We did not know the reason. 22 General Procedure of Acetates 4A–C First Step To a solution of aldehyde 1 (0.60 mmol) and cyanide 2 (0.20 mmol) in MeCN (0.40 mL), 3,5-dinitrobenzoic acid (8.5 mg, 0.040 mmol), water (10.8 μL, 0.60 mmol), and organocatalyst (13.0 mg, 0.040 mmol) were added at room temperature. After stirring the reaction mixture at this temperature for the indicated time, the reaction mixture was directly purified by column (n-hexane only to n-hexane/EtOAc = 5:1) to give 3,4-dihydro-2H-pyran derivatives as an inseparable diastereomeric mixture. Second Step To a solution of 3,4-dihydro-2H-pyran derivatives 3 in CH2Cl2 (0.20 M), acetic anhydride (1.5 equiv.) and DMAP (0.20 equiv.) were added at room temperature. After stirring the reaction mixture at this temperature for 20 min, the reaction mixture was directly purified by column chromatography on silica gel (n-hexane only to n-hexane/EtOAc = 10:1) to give the acetates 4 as an inseparable diastereomeric mixture. (2S,3R,4S)-5-Cyano-3,6-dimethyl-4-phenyl-3,4-dihydro-2H-pyran-2-yl Acetate (4aaA), (2R,3R,4S)-5-Cyano-3,6-dimethyl-4-phenyl-3,4-dihydro-2H-pyran-2-yl Acetate (4aaB), and (2S,3R,4R)-5-Cyano-3,6-dimethyl-4-phenyl-3,4-dihydro-2H-pyran-2-yl Acetate (4aaC) Following the general procedure, 4aaA, 4aaB, and 4aaC were isolated as colorless oil in 92% overall yield (total 49.9 mg, A:B:C = 65:24:11, trans/cis = 8.1:1 at C3/C4). 1H NMR (400 MHz, C6D6): δ = 7.12 (d, J = 8.0 Hz, 1 H), 7.08–7.04 (m, 1 H), 6.96 (d, J = 7.2 Hz, 2 H), 6.18 (d, J = 2.4 Hz, 0.24 H, B), 6.06 (d, J = 5.6 Hz, 0.11 H, C), 5.84 (d, J = 8.0 Hz, 0.65 H, A), 3.51 (d, J = 5.6 Hz, 0.11 H, C), 3.16 (d, J = 10.8 Hz, 0.24 H, B), 2.73 (d, J = 8.8 Hz, 0.65 H, A), 1.90 (d, J = 1.6 Hz, 0.33 H, C), 1.89 (d, J = 1.6 Hz, 0.72 H, B), 1.86 (d, J = 2.0 Hz, 1.95 H, A), 1.84–1.68 (m, 1 H), 1.58 (d, J = 2.0 Hz, 0.72 H, B), 1.57 (d, J = 2.0 Hz, 0.33 H, C), 1.47 (d, J = 1.6 Hz, 1.95 H, A), 0.52 (d, J = 6.8 Hz, 1.95 H, A), 0.46 (d, J = 6.8 Hz, 0.72 H, B), 0.35 (d, J = 7.2 Hz, 0.33 H, C) 13C NMR (100 MHz, CDCl3): δ = 169.3, 169.1, 169.0, 164.1, 164.0, 162.9, 139.4, 139.3, 137.0, 129.0, 128.9, 128.7, 128.5, 128.5, 128.3, 128.0, 127.8, 127.6, 118.5, 118.3, 118.1, 94.9, 93.1, 91.6, 89.7, 88.4, 87.0, 45.5, 42.1, 40.5, 37.5, 36.5, 34.0, 20.9, 20.8, 20.6, 19.6, 19.6, 19.5, 14.5, 13.6, 12.0. HRMS (ESI): m/z [M + Na]+ calcd for C16H17NNaO3 +: 294.1101; found: 294.1104. IR (neat): ν = 2974, 2210, 1762, 1641, 1389, 1217, 1186, 1028, 753, 702 cm–1. The enantiomeric excess of 4aaA (97% ee) was determined by HPLC using CHIRALPAK® OZ-H (n-hexane/i-PrOH = 99:1; flow rate 1.0 mL/min; major isomer t R = 40.6 min, minor isomer t R = 58.1 min). The enantiomeric excess of 4aaB (97% ee) was determined by HPLC using CHIRALPAK® OZ-H (n-hexane/i-PrOH = 333:1; flow rate 1.0 mL/min; major isomer t R = 21.2 min, minor isomer t R = 43.2 min). The enantiomeric excess of 4aaC (43% ee) was determined by HPLC using CHIRALPAK® OZ-H (n-hexane/i-PrOH = 333:1; flow rate 1.0 mL/min; major isomer t R = 28.9 min, minor isomer t R = 37.4 min). Supplementary Material Supplementary Material Supporting Information