Subscribe to RSS
DOI: 10.1055/a-2347-1102
Tungsten-Catalyzed Regioselective Allylic Amination
This work was supported by the Natural Science Foundation of Jilin Province (YDZJ202201ZYTS348), a Project of the Jilin Education Department (JJKH20220233KJ), and the starting fund of Jilin Institute of Chemical Technology (No. 2021015, 2021042).
![](https://www.thieme-connect.de/media/synlett/202504/lookinside/thumbnails/st-2024-l0168-l_10-1055_a-2347-1102-1.jpg)
Abstract
A highly regioselective synthesis of allylic amines based on a tungsten-catalyzed allylic amination has been developed. This protocol, which is catalyzed by commercially available W(CO)3(MeCN)3 and 4,4′-di-tert-butyl-2,2′-bipyridine, permits the formation of synthetically useful branched allylic N-aryl- and N-alkylamines in moderate to good yields with a >20:1 branched/linear ratio under mild conditions. The noble-metal-free catalytic system complements conventional allylic aminations catalyzed by an Ir or Rh complex.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2347-1102.
- Supporting Information
Publication History
Received: 29 May 2024
Accepted after revision: 17 June 2024
Accepted Manuscript online:
17 June 2024
Article published online:
24 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 1b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 1c Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 2a Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
- 2b Hethcox JC, Shockley SE, Stoltz BM. ACS Catal. 2016; 6: 6207
- 2c Qu J, Helmchen G. Acc. Chem. Res. 2017; 50: 2539
- 2d Cheng Q, Tu H.-F, Zheng C, Qu JP, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 3a Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
- 3b Thoke MB, Kang Q. Synthesis 2019; 51: 2585
- 3c Koschker P, Breit B. Acc. Chem. Res. 2016; 49: 1524
- 4a Welter C, Koch O, Lipowsky G, Helmchen G. Chem. Commun. 2004; 896
- 4b Welter C, Dahnz A, Brunner B, Streiff S, Dübon P, Helmchen G. Org. Lett. 2005; 7: 1239
- 4c Weihofen R, Tverskoy O, Helmchen G. Angew. Chem. Int. Ed. 2006; 45: 5546
- 4d Gärtner M, Jakel M, Achatz M, SonnenSchein C, Tverskoy O, Helmchen G. Org. Lett. 2011; 13: 2810
- 5a Ohmura T, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 15164
- 5b Kiener CA, Shu C, Incarvito C, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 14272
- 5c Shu C, Leitner A, Hartwig JF. Angew. Chem. Int. Ed. 2004; 43: 4797
- 5d Shekhar S, Trantow B, Leitner A, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 11770
- 5e Yamashita Y, Gopalarathnam A, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 7508
- 5f Marković D, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 11680
- 6a Defieber C, Ariger MA, Moriel P, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
- 6b Roggen M, Carreira EM. J. Am. Chem. Soc. 2010; 132: 11917
- 6c Lafrance M, Roggen M, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3470
- 6d Rössler SL, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2017; 139: 3603
- 7a Liu W.-B, Zhang X, Dai L.-X, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 5183
- 7b Yang Z.-P, Wu Q.-F, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 6986
- 7c Zhang X, Yang Z.-P, Huang L, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 1873
- 7d Yang Z.-P, Wu QF, Shao W, You S.-L. J. Am. Chem. Soc. 2015; 137: 15899
- 7e Ye K.-Y, Cheng Q, Zhuo C.-X, Dai L.-X, You S.-L. Angew. Chem. Int. Ed. 2016; 55: 8113
- 7f Yang Z.-P, Zheng C, Huang L, Qian C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 1530
- 8a Meza AT, Wurm T, Smith L, Kim SW, Zbieg JR, Stivala CE, Krische MJ. J. Am. Chem. Soc. 2018; 140: 1275
- 8b Kim SW, Schwartz LA, Zbieg JR, Stivala CE, Krische MJ. J. Am. Chem. Soc. 2019; 141: 671
- 8c Kim SW, Schempp TT, Zbieg JR, Stivala CE, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 7762
- 9a Arnold JS, Cizio GT, Nguyen HM. Org. Lett. 2011; 13: 5576
- 9b Arnold JS, Nguyen HM. J. Am. Chem. Soc. 2012; 134: 8380
- 9c Arachchi MK, Schaugaard RN, Schlegel HB, Nguyen HM. J. Am. Chem. Soc. 2023; 145: 19642
- 10a Xu W.-B, Ghorai S, Huang W, Li C. ACS. Catal. 2020; 10: 4491
- 10b Sun M, Liu M, Li C. Chem. Eur. J. 2021; 27: 3457
- 10c Xu W.-B, Sun M, Shu M, Li C. J. Am. Chem. Soc. 2021; 143: 8255
- 10d Sun M, Wei L, Li C. Synlett 2023; 34: 1497
- 11a Malda H, van Zijl AW, Arnold LA, Feringa BL. Org. Lett. 2001; 3: 1169
- 11b Alexakis A, Croset K. Org. Lett. 2002; 4: 4147
- 11c Shi W.-J, Wang L.-X, Fu Y, Zhu S.-F, Zhou Q.-L. Tetrahedron: Asymmetry 2003; 14: 3867
- 11d Van Veldhuizen JJ, Campbell JE, Giudici RE, Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 6877
- 11e Plietker B. Angew. Chem. Int. Ed. 2006; 45: 6053
- 11f Selim KB, Matsumoto Y, Yamada K.-i, Tomioka K. Angew. Chem. Int. Ed. 2009; 48: 8733
- 11g Ghorai S, Chirke SS, Xu W.-B, Chen J.-F, Li C. J. Am. Chem. Soc. 2019; 141: 11430
- 11h Ghorai S, Ur Rehman S, Xu W.-B, Huang W.-Y, Li C. Org. Lett. 2020; 22: 3519
- 11i Sun M, Chen J.-F, Chen S, Li C. Org. Lett. 2019; 21: 1278
- 11j Takizawa K, Sekino T, Sato S, Yoshino T, Kojima M, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 9919
- 11k Manna MS, Yoo SE, Sharique M, Choi H, Pudasaini B, Baik M.-H, Tambar UK. Angew. Chem. Int. Ed. 2023; e202304848
- 12a Trost BM, Lautens M. J. Am. Chem. Soc. 1982; 104: 5543
- 12b Trost BM, Hung M.-H. J. Am. Chem. Soc. 1983; 105: 7757
- 12c Trost BM, Hachiya I. J. Am. Chem. Soc. 1998; 120: 1104
- 12d Trost BM, Zhang Y. J. Am. Chem. Soc. 2006; 128: 4590
- 12e Trost BM, Zhang Y. J. Am. Chem. Soc. 2007; 129: 14548
- 12f Trost BM, Miller JR, Hoffman CM. Jr. J. Am. Chem. Soc. 2011; 133: 8165
- 13a Belda O, Moberg C. Acc. Chem. Res. 2004; 37: 159
- 13b Belda O, Kaiser N.-F, Bremberg U, Larhed M, Hallberg A, Moberg C. J. Org. Chem. 2000; 65: 5868
- 13c Belda O, Lundgren S, Moberg C. Org. Lett. 2003; 5: 2275
- 14a Hughes DL, Palucki M, Yasuda N, Reamer RA, Reider PJ. J. Org. Chem. 2002; 67: 2762
- 14b Trost BM, Dogra K, Hachiya I, Emura T, Hughes DL, Krska S, Reamer RA, Palucki M, Yasuda N, Reider PJ. Angew. Chem. Int. Ed. 2002; 41: 1929
- 14c Lloyd-Jones GC, Krska SW, Hughes DL, Gouriou L, Bonnet VD, Jack K, Sun Y, Reamer RA. J. Am. Chem. Soc. 2004; 126: 702
- 15a Glorius F, Neuburger M, Pfaltz A. Org. Lett. 1999; 1: 141
- 15b Glorius F, Neuburger M, Pfaltz A. Helv. Chim. Acta 2001; 84: 3178
- 16a Salman M, Xu Y, Khan S, Zhang J, Khan A. Chem. Sci. 2020; 11: 5481
- 16b Khan S, Salman M, Wang Y, Zhang J, Khan A. J. Org. Chem. 2023; 88: 11992
- 16c Khan S, Zhang J, Khan A. Org. Lett. 2024; 26: 2758
- 17a Bullock RM. In Handbook of Homogeneous Hydrogenation, Vol. 1. de Vries J, Elsevier CJ. Wiley-VCH; Weinheim: 2007. 153
- 17b Catalysis without Precious Metals . Bullock RM. Wiley-VCH; Weinheim: 2010
- 18a Trost BM, Tometzki GB, Hung M.-H. J. Am. Chem. Soc. 1987; 109: 2176
- 18b Lehmann J, Lloyd-Jones GC. Tetrahedron 1995; 51: 8863
- 19a Hager A, Vrielink N, Hager D, Lefranc J, Trauner D. Nat. Prod. Rep. 2016; 33: 491
- 19b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 20 Xu Y, Salman M, Khan S, Zhang J, Khan A. J. Org. Chem. 2020; 85: 11501
- 21a Cheng Y, Tang S, Guo Y, Ye T. Org. Lett. 2018; 20: 6166
- 21b Kim DE, Zweig JE, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 1479
- 22 For details, see the Supporting Information.
- 23 N-(1-Propylprop-2-en-1-yl)aniline (3a); Typical Procedure A pressure tube equipped with a magnetic stirrer bar was charged with W(CO)3(MeCN)3 (10 mol%) and L6 (12 mol%). The tube was purged with argon for 3 minutes, then EtOH (2 mL) was added, followed by the allylic carbonate 1a (1.1 equiv) and aniline (2a) (1.0 equiv). The tube was sealed with a PTFE-lined cap, and the mixture was stirred in an oil bath at 80 °C for 48 h, then cooled. The crude reaction mixture was directly subjected to flash column chromatography [silica gel, PE–EtOAc (100:1)] to give a colorless oil; yield: 63.7 mg (91%). TLC Rf = 0.5 (PE–EtOAc, 100:1). 1H NMR (400 MHz, CDCl3): δ = 7.17 (dd, J = 8.5, 7.4 Hz, 2 H), 6.63 (t, J = 7.3 Hz, 1 H), 6.62–6.55 (m, 2 H), 5.75–5.73 (m, 1 H), 5.22 (d, J = 17.2 Hz, 1 H), 5.15 (d, J = 10.3 Hz, 1 H), 3.89–3.77 (m, 1 H), 3.61 (s, 1 H), 1.65–1.54 (m, 2 H), 1.52–1.34 (m, 2 H), 0.96 (t, J = 7.3 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 147.6, 140.4, 129.3, 117.1, 115.1, 113.3, 55.6, 38.7, 19.2, 14.0. HRMS (ESI): m/z [M + H]+ calcd for C12H18N: 176.1434; found: 176.1439.
For selected reviews on Ir catalysis, see:
For selected reviews on Rh catalysis, see: