Subscribe to RSS
DOI: 10.1055/a-2349-1736
Design, Synthesis, and Biological Evaluation of Novel Mitochondria-Targeting Fluorescent Phenothiazine Derivatives as Potential Anticancer Agents
This work was financially supported by the Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education Foundation (ACBM2019004) and the Research Fund of Hubei University of Science and Technology (TD201801, 202022GP02, 2022ZX11).
![](https://www.thieme-connect.de/media/synlett/202504/lookinside/thumbnails/st-2024-l0136-l_10-1055_a-2349-1736-1.jpg)
Abstract
In this research, we synthesized a novel mitochondrial-targeted antitumor lead compound named phenolthiazide-4C-Pvi (PCP) by modifying a phenothiazine with 3-(2-pyridin-4-ylvinyl)-1H-indole (Pvi) as a mitochondrial-targeted fluorescent cargo. Our preliminary findings indicated that PCP exhibits remarkable cell imaging and mitochondrial localization ability, and can induce apoptosis by influencing the membrane potential and reactive oxygen species levels in mitochondria. Compared with phenothiazines, PCP has an excellent ability to target the mitochondria of cancer cells, and its selectivity and toxicity to tumor cells are stronger than those toward normal cells. These results demonstrated that PCP possesses strong antitumor effects with excellent selectivity, making it a promising candidate as a mitochondrial-targeted antitumor drug.
Key words
phenothiazines - pyridinylvinylindole - mitochondria targeting - anticancer drugs - medicinal chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2349-1736.
- Supporting Information
Publication History
Received: 05 May 2024
Accepted after revision: 19 June 2024
Accepted Manuscript online:
19 June 2024
Article published online:
03 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Lin MT, Beal MF. Nature 2006; 443: 787
- 1b Smith RA. J, Hartley RC, Cochemé HM, Murphy MP. Trends Pharmacol. Sci. 2012; 33: 341
- 2 Liu Y, Shi Y. MedComm 2020; 1: 129
- 3a Hickey JL, Ruhayel RA, Barnard PJ, Baker MV, Berners-Price SJ, Filipovska A. J. Am. Chem. Soc. 2008; 130: 12570
- 3b Iihoshi H, Ishihara T, Kuroda S, Ishihara N, Saitoh H. Toxicol. Lett. 2017; 277: 109
- 4a Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R. Biochim. Biophys. Acta, Bioenerg. 2009; 1787: 335
- 6a Gao Y, Su Y, Qu L, Xu S, Meng L, Cai S.-Q, Shou C. Toxicol. Lett. 2011; 207: 112
- 6b Tait SW. G, Green DR. Nat. Rev. Mol. Cell Biol. 2010; 11: 621
- 7a Fulda S, Galluzzi L, Kroemer G. Nat. Rev. Drug. Discovery 2010; 9: 447
- 7b Wang H, Feng Z, Wang Y, Zhou R, Yang Z, Xu B. J. Am. Chem. Soc. 2016; 138: 16046
- 7c Yamada Y, Harashima H. Adv. Drug Deliv. Rev. 2008; 60: 1439
- 8a Heller A, Brockhoff G, Goepferich A. Eur. J. Pharm. Biopharm. 2012; 82: 1
- 8b Riganti C, Rolando B, Kopecka J, Campia I, Chegaev K, Lazzarato L, Federico A, Fruttero R, Ghigo D. Mol. Pharmaceutics 2013; 10: 161
- 8c Weissig V. Expert Opin. Drug Delivery 2005; 2: 89
- 9 Begum HM, Shen K. Wiley Interdiscip. Rev.: Mech. Dis. 2023; 15: e1595
- 10a Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, Cho Y.-Y, Lee JY, Lee HS, Kang HC. Acta Pharm. Sin. B 2018; 8: 862
- 10b Checchetto V, Azzolini M, Peruzzo R, Capitanio P, Leanza L. Biochem. Biophys. Res. Commun. 2018; 500: 51
- 10c Kelley SO, Stewart KM, Mourtada R. Pharm. Res. 2011; 28: 2808
- 11a Nödling AR, Mills EM, Li X, Cardella D, Sayers EJ, Wu S.-H, Jones AT, Luk LY. P, Tsai Y.-H. Chem. Commun. 2020; 56: 4672
- 11b Wu J, Li J, Wang H, Liu C.-B. Expert Opin. Drug Delivery 2018; 15: 951
- 11c Xu J, He H, Zhou L.-J, Liu Y.-Z, Li D.-W, Jiang F.-L, Liu Y. Eur. J. Med. Chem. 2018; 154: 305
- 12a Gao T, He H, Huang R, Zheng M, Wang F.-F, Hu Y.-J, Jiang F.-L, Liu Y. Dyes Pigm. 2017; 141: 530
- 12b Wongrakpanich A, Geary SM, Joiner M.-lA, Anderson ME, Salem AK. Nanomedicine (London U. K.) 2014; 9: 2531
- 13a Fantin VR, Leder P. Cancer Res. 2004; 64: 329
- 13b Yousif LF, Stewart KM, Kelley SO. ChemBioChem 2009; 10: 1939
- 14a Cao J.-J, Tan C.-P, Chen M.-H, Wu N, Yao D.-Y, Liu X.-G, Ji L.-N, Mao Z.-W. Chem. Sci. 2017; 8: 631
- 14b He H, Li D.-W, Yang L.-Y, Fu L, Zhu X.-J, Wong W.-K, Jiang F.-L, Liu Y. Sci. Rep. 2015; 5: 13543
- 15 Gao Y, Sun T.-Y, Bai W.-F, Bai C.-G. Eur. J. Med. Chem. 2019; 183: 111692
- 16a Varga B, Csonka Á, Csonka A, Molnár J, Amaral L, Spengler G. Anticancer Res. 2017; 37: 5983
- 16b Burgess DJ. Nat. Rev. Cancer 2012; 12: 452
- 17a Wang J, Fan X.-Y, Yang L.-Y, He H, Huang R, Jiang F.-L, Liu Y. MedChemComm 2016; 7: 2016
- 17b Wang J, He H, Xiang C, Fan X.-Y, Yang L.-Y, Yuan L, Jiang F.-L, Liu Y. Toxicol. Sci. 2018; 161: 431
- 18 1-[4-(2-Chloro-10H-phenothiazin-10-yl)butyl]-4-[(E)-2-(1H-indol-3-yl)vinyl]pyridinium bromide (PCP) A mixture of Pvi (220 mg, 1.0 mmol), 10-(4-bromobutyl)-2-chloro-10H-phenothiazine (367 mg, 1.0 mmol), and anhyd toluene (5.0 mL) was stirred at r.t. for 48 h. The mixture was then concentrated under reduced pressure, and the residue was purified by column chromatography [neutral alumina, CH2Cl2–MeOH (50:1 to 10:1 gradient)] to give a yellow solid; yield: 320 mg (63%). 1H NMR (400 MHz, DMSO-d 6): δ = 12.13 (s, 1 H), 8.72 (d, J = 6.7 Hz, 2 H), 8.34–7.91 (m, 5 H), 7.60–7.45 (m, 1 H), 7.31–7.09 (m, 6 H), 7.06–6.89 (m, 4 H), 4.44 (t, J = 6.7 Hz, 2 H), 3.90 (t, J = 6.5 Hz, 2 H), 2.10–1.87 (m, 2 H), 1.78–1.48 (m, 2 H). 13C NMR(101 MHz, DMSO-d 6): δ = 155.0, 146.5, 143.9, 137.5, 132.9, 128.6, 127.8, 125.3, 123.5, 123.0, 121.6, 120.9, 117.2, 116.3, 114.0, 113.1, 58.9, 46.3, 28.1, 23.0. LC-MS (ESI+): m/z [M+] calcd for C31H27ClN3S: 508.16; found: 508.33.