Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/a-2352-4760
DOI: 10.1055/a-2352-4760
letter
Stereoselective Synthesis of C-Aryl-α-Glycosides by Reductive C(sp2)–C(sp3) Cross-Coupling Reaction
This study was partially supported by BINDS and SCARDA from the Japan Agency for Medical Research and Development, AMED, a Grant-in-Aid for Transformative Research Areas (A) (Green Catalysis Science, 23H04913) from MEXT, the JSPS KAKENHI (grants nos. 24H01778, 24K08414, 24K01638, 23H05481, 22K14683), Mizutani Foundation for Glycoscience, Leading Pioneers Science Foundation, and Asian Chemical Biology Initiative.
Abstract
C-Aryl glycosides have attracted considerable interest as biologically active natural products and as O-aryl glycoside mimetics in drug discovery. Here, we describe a straightforward synthesis of C-aryl glycosides by photoredox/Ni dual-catalyzed reductive cross-coupling between glycosyl bromides and aryl bromides. This methodology enables a highly α-stereoselective synthesis of C-aryl glucosides, galactosides, and mannosides.
Key words
glycosides - photoredox catalysis - nickel catalysis - cross-coupling - stereoselectivity - conformational restrictionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2352-4760.
- Supporting Information
Publication History
Received: 12 May 2024
Accepted after revision: 25 June 2024
Accepted Manuscript online:
25 June 2024
Article published online:
19 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Suzuki K. Pure Appl. Chem. 1994; 66: 2175
- 1b Hansen MR, Hurley LH. Acc. Chem. Res. 1996; 29: 249
- 1c Lee DY. W, He M. Curr. Top. Med. Chem (Sharjah, United Arab Emirates) 2005; 5: 1333
- 2a Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Taylor JR, Obermeier MT, Humphreys WG, Khanna A, Discenza L, Robertson JG, Wang A, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM, Washburn WN. J. Med. Chem. 2008; 51: 1145
- 2b Xu B, Feng Y, Cheng H, Song Y, Lv B, Wu Y, Wang C, Li S, Xu M, Du J, Peng K, Dong J, Zhang W, Zhang T, Zhu L, Ding H, Sheng Z, Welihinda A, Roberge JY, Seed B, Chen Y. Bioorg. Med. Chem. Lett. 2011; 21: 4465
- 3a Chao EC, Henry RR. Nat. Rev. Drug Discovery 2010; 9: 551
- 3b Aguillón AR, Mascarello A, Segretti ND, de Azevedo HF. Z, Guimaraes CR. W, Miranda LS. M, de Souza RO. M. A. Org. Process Res. Dev. 2018; 22: 467
- 4a Tomiyama H, Yanagisawa T, Nimura M, Noda A, Tomiyama T. US 6635622, 2003
- 4b Yang G, Schmieg J, Tsuji M, Franck RW. Angew. Chem. Int. Ed. 2004; 43: 3818
- 4c Chen G, Schmieg J, Tsuji M, Franck RW. Org. Lett. 2004; 6: 4077
- 4d Toba T, Murata K, Yamamura T, Miyake S, Annoura H. Tetrahedron Lett. 2005; 46: 5043
- 4e Lu X, Song L, Metelitsa LS, Bittman R. ChemBioChem 2006; 7: 1750
- 4f Wipf P, Pierce JG. Org. Lett. 2006; 8: 3375
- 4g Liu Z, Byun H.-S, Bittman R. Org. Lett. 2010; 12: 2974
- 4h Altiti AS, Mootoo DR. Org. Lett. 2014; 16: 1466
- 4i Chang Y.-J, Hsuan Y.-C, Lai AC.-Y, Han Y.-C, Hou D.-R. Org. Lett. 2016; 18: 808
- 4j Altiti AS, Bachan S, Mootoo DR. Org. Lett. 2016; 18: 4654
- 4k Hidaka Y, Kiya N, Yoritate M, Usui K, Hirai G. Chem. Commun. 2020; 56: 4712
- 5a Inuki S, Kashiwabara E, Hirata N, Kishi J, Nabika E, Fujimoto Y. Angew. Chem. Int. Ed. 2018; 57: 9655
- 5b Hossain MI, Hanashima S, Nomura T, Lethu S, Tsuchikawa H, Murata M, Kusaka H, Kita S, Maenaka K. Bioorg. Med. Chem. 2016; 24: 3687
- 5c Janssens J, Decruy T, Venken K, Seki T, Krols S, Van der Eycken J, Tsuji M, Elewaut D, Van Calenbergh S. ACS Med. Chem. Lett. 2017; 8: 642
- 5d Guillaume J, Wang J, Janssens J, Remesh SG, Risseeuw MD. P, Decruy T, Froeyen M, Elewaut D, Zajonc DM, Van Calenbergh S. Sci. Rep. 2017; 7: 4276
- 5e Chennamadhavuni D, Saavedra-Avila NA, Carreño LJ, Guberman-Pfeffer MJ, Arora P, Yongqing T, Pryce R, Koay H.-F, Godfrey DI, Keshipeddy S, Richardson SK, Sundararaj S, Lo JH, Wen X, Gascón JA, Yuan W, Rossjohn J, Le Nours J, Porcelli SA, Howell AR. Cell Chem. Biol. 2018; 25: 571
- 5f Hwang YS, Yim J, Song H, Park SB. ACS Med. Chem. Lett. 2019; 10: 720
- 6a Du Y, Linhardt RJ, Vlahov IR. Tetrahedron 1998; 54: 9913
- 6b Bokor É, Kun S, Goyard D, Tóth M, Praly J.-P, Vidal S, Somsák L. Chem. Rev. 2017; 117: 1687
- 6c Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
- 6d Kitamura K, Ando Y, Matsumoto T, Suzuki K. Chem. Rev. 2018; 118: 1495
- 6e Shang W, Niu D. Acc. Chem. Res. 2023; 56: 2473
- 6f Jiang Y, Zhang Y, Lee BC, Koh MJ. Angew. Chem. Int. Ed. 2023; 62: e202305138
- 6g Parida SP, Das T, Ahemad MA, Pati T, Mohapatra S, Nayak S. Carbohydr. Res. 2023; 530: 108856
- 7 Gong H, Gagné MR. J. Am. Chem. Soc. 2008; 130: 12177
- 8a Nicolas L, Angibaud P, Stansfield I, Bonnet P, Meerpoel L, Reymond S, Cossy J. Angew. Chem. Int. Ed. 2012; 51: 11101
- 8b Nicolas L, Izquierdo E, Angibaud P, Stansfield I, Meerpoel L, Reymond S, Cossy J. J. Org. Chem. 2013; 78: 11807
- 9 Adak L, Kawamura S, Toma G, Takenaka T, Isozaki K, Takaya H, Orita A, Li HC, Shing TK. M, Nakamura M. J. Am. Chem. Soc. 2017; 139: 10693
- 10a Zhu F, Rourke MJ, Yang T, Rodriguez J, Walczak MA. J. Am. Chem. Soc. 2016; 138: 12049
- 10b Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J. Am. Chem. Soc. 2017; 139: 17908
- 10c Yi D, Zhu F, Walczak MA. Org. Lett. 2018; 20: 4627
- 10d Yi D, Zhu F, Walczak MA. Org. Lett. 2018; 20: 1936
- 11 Liu J, Gong H. Org. Lett. 2018; 20: 7991
- 12 The β-selective preparation of C-aryl glycosides is possible by employing tBu3terpy as the ligand; see: Liu J, Lei C, Gong H. Sci. China Chem. 2019; 62: 1492
- 13 For a selected review on the synthesis of C-aryl glycosides by C–H functionalization, see: Gou X.-Y, Zhu X.-Y, Zhang B.-S, Liang Y.-M. Chem. Eur. J. 2023; 29: e202203351
- 14 Moriyama T, Yoritate M, Kato N, Saika A, Kusuhara W, Ono S, Nagatake T, Koshino H, Kiya N, Moritsuka N, Tanabe R, Hidaka Y, Usui K, Chiba S, Kudo N, Nakahashi R, Igawa K, Matoba H, Tomooka K, Ishikawa E, Takahashi S, Kunisawa J, Yamasaki S, Hirai G. J. Am. Chem. Soc. 2024; 146: 2237
- 15 Hirai G, Kato M, Koshino H, Nishizawa E, Oonuma K, Ota E, Watanabe T, Hashizume D, Tamura Y, Okada M, Miyagi T, Sodeoka M. JACS Au 2020; 1: 137
- 16 For a photoredox reaction with allyl glycosyl sulphone donors, see: Zhang C, Xu S.-Y, Zuo H, Zhang X, Dang Q.-D, Niu D. Nat. Synth. 2023; 2: 251
- 17a Mou Z.-D, Wang J.-X, Zhang X, Niu D. Adv. Synth. Catal. 2021; 363: 3025
- 17b Xia L, Fan W, Yuan X.-A, Yu S. ACS Catal. 2021; 11: 9397
- 17c Jiao Y, Shi X, Ju L, Yu S. Org. Lett. 2024; 26: 390
- 17d Jiao Y, Shi X, Ju L, Yu S. Org. Lett. 2024; 26: 390
- 17e Jiao Y, Shi X, Ju L, Yu S. Org. Lett. 2024; 26: 390
- 17f Jiao Y, Shi X, Yu S. Chem. Commun. 2023; 59: 13336
- 18a Takeda D, Yoritate M, Yasutomi H, Chiba S, Moriyama T, Yokoo A, Usui K, Hirai G. Org. Lett. 2021; 23: 1940
- 18b Miller EM, Walczak MA. Org. Lett. 2021; 23: 4289
- 19 For a photoredox reaction with glycosyl ester donors, see: Wei Y, Ben-zvi B, Diao T. Angew. Chem. Int. Ed. 2021; 60: 9433
- 20a Badir SO, Dumoulin A, Matsui JK, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 6610
- 20b Xia L, Jin M, Jiao Y, Yu S. Org. Lett. 2021; 24: 364
- 20c Wei Y, Lam J, Diao T. Chem. Sci. 2021; 12: 11414
- 20d Miura T, Yoritate M, Hirai G. Chem. Commun. 2023; 59: 8564
- 20e Chen A, Zhao S, Han Y, Zhou Z, Yang B, Xie L.-G, Walczak MA, Zhu F. Chem. Sci. 2023; 14: 7569
- 21a Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
- 21b Smith RT, Zhang X, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
- 22a Duan Z, Li W, Lei A. Org. Lett. 2016; 18: 4012
- 22b Paul A, Smith MD, Vannucci AK. J. Org. Chem. 2017; 82: 1996
- 22c Peng L, Li Z, Yin G. Org. Lett. 2018; 20: 1880
- 22d Yu W, Chen L, Tao J, Wang T, Fu J. Chem. Commun. 2019; 55: 5918
- 22e Lu Q, Guan H, Wang Y.-E, Xiong D, Lin T, Xue F, Mao J. J. Org. Chem. 2022; 87: 8048
- 23a Korth HG, Sustmann R, Groeninger KS, Leisung M, Giese B. J. Org. Chem. 1988; 53: 4364
- 23b Abe H, Terauchi M, Matsuda A, Shuto S. J. Org. Chem. 2003; 68: 7439
- 23c Manabe S, Aihara Y, Ito Y. Chem. Commun. 2011; 47: 9720
- 23d Satoh H, Manabe S. Chem. Soc. Rev. 2013; 42: 4297
- 24 For our recent studies on the controlled α-selective synthesis of CH2-linked (1,6)-disaccharides and CH2-linked glycosylceramides by direct radical coupling C-glycosylation of a C1–sp3 hybridized donor adopting a restricted 4C1 conformation, see: Kiya N, Hidaka Y, Usui K, Hirai G. Org. Lett. 2019; 21: 1588 ; see also ref. 4k
- 25 The [Ir]/[Ni] molar ratio was determined based on the optimized conditions of Ref. 14.
- 26 The stereoselectivity of the coupling product was determined based on the corresponding deacetylated derivative (see SI).
- 27a Fu Y, Liu L, Yu H.-Z, Wang Y.-M, Guo Q.-X. J. Am. Chem. Soc. 2005; 127: 7227
- 27b Noble A, Mega RS, Pflästerer D, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 2155
- 28 In most cases, only α-anomers were produced, except in the case of glycoside o-3aa (α/β = 8:1). It should be noted that after column purification, the β-anomer was not detected.
- 29a Manabe S, Ito Y. J. Am. Chem. Soc. 1999; 121: 9754
- 29b Nishikawa T, Ishikawa M, Wada K, Isobe M. Synlett 2001; 945
- 29c Manabe S, Sakamoto K, Nakahara Y, Sisido M, Hohsaka T, Ito Y. Bioorg. Med. Chem. 2002; 10: 573
- 29d Nishikawa T, Koide Y, Kajii S, Wada K, Ishikawa M, Isobe M. Org. Biomol. Chem. 2005; 3: 687
- 29e Nishikawa T, Koide Y, Kanakubo A, Yoshimura H, Isobe M. Org. Biomol. Chem. 2006; 4: 1268
- 29f Mao R, Xi S, Shah S, Roy MJ, John A, Lingford JP, Gäde G, Scott NE, Goddard-Borger ED. J. Am. Chem. Soc. 2021; 143: 12699
- 30 C-Aryl-α-Glycosides 3aa–co; General Procedure A 10 mL vial was charged with NiCl2·DME (11.0 mg, 50.1 μmol), dtbbpy (16.0 mg, 59.6 μmol), and MeCN (5.0 mL) in air, and the mixture was sonicated to give a blue solution of the ligated Ni complex (10 mM in MeCN stock solution). This solution (500 μL, 5.0 μmol, 10 mol%) was added to a 4 mL vial, concentrated by blowing N2, and dried in vacuo. To the vial were sequentially added the appropriate glycosyl bromide 1 (75.0 μmol, 1.5 equiv), (het)aryl bromide 2 (50.0 μmol, 1.0 equiv), {Ir[dFCF3ppy]2(dtbbpy)PF6} (2.8 mg, 2.5 μmol, 5 mol%), DME (500 μL), 2,4,6-collidine (13 μL, 100 μmol, 2.0 equiv), and TMSSiOH (23 μL, 75 μmol, 1.5 equiv). The vial was sealed and the mixture was stirred and irradiated by a blue LED for 12 h at 28–30 °C. The mixture was then exposed to air, filtered through Celite (rinsed with 1:1 hexane–EtOAc), then concentrated. The residue was purified by recycling GPC (CHCl3) and short-column chromatography (silica gel). 3aa Prepared by the general procedure from 1a (26.5 mg, 75.0 μmol, 1.5 equiv) and p-2a (10.8 mg, 50.0 μmol, 1.0 equiv), and purified by GPC and short-column chromatography [silica gel, hexane–EtOAc (9:1 to 2:1)] to give a white solid; yield: 10.8 mg (53%), [α]D 20 = 119.5 (c 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 8.11 (d, J = 8.5 Hz, 2 H), 7.58 (d, J = 7.9 Hz, 2 H), 5.64 (d, J = 5.5 Hz, 1 H), 5.37 (t, J = 9.6 Hz, 1 H), 4.80 (dd, J = 11.9, 5.8 Hz, 1 H), 4.33 (dd, J = 11.9, 9.8 Hz, 1 H) , 4.29 (dd, J = 12.5, 5.2 Hz, 1 H), 4.25 (dd, J = 12.5, 2.4 Hz, 1 H), 3.94 (s, 3 H), 3.85 (ddd, J = 9.2, 4.9, 2.8 Hz, 1 H), 2.16 (s, 3 H), 2.06 (s, 3 H). 13C{1H} NMR (126 MHz, CDCl3): δ = 170.6, 169.0, 166.4, 152.6, 138.4, 130.7, 130.6 (2C), 126.5 (2C), 78.1, 77.7, 72.7, 72.3, 69.0, 62.1, 52.5, 20.9, 20.6. HRMS-ESI: m/z [M + Na]+ calcd for C19H20NaO10: 431.0954; found: 431.0943.
For recent representative reports on KRN7000, see:
For selected reviews on C-glycosides, see:
For photoredox reactions with glycosyl halide donors, see:
For photoredox reactions with glycosyl trifluoroborate donors, see:
For selected examples of the synthesis of aliphatic C-glycosides, see:
For other approaches by photoredox/Ni dual-catalyzed reductive cross-coupling of alkyl halides with aryl and vinyl halides, see: