Synlett, Inhaltsverzeichnis Synlett 2025; 36(05): 531-535DOI: 10.1055/a-2352-4950 letter Base-Promoted Reaction between N-Acyl Benzotriazoles and p-Toluenesulfonylmethyl Isocyanide (TosMIC): A Facile Synthesis of 4,5-Disubstituted Oxazoles Hui You , Daming Liu , Mengni Pan , Yue Shen , Yang Li , Wanfang Li ∗ Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract We herein developed a base-promoted cyclization reaction between N-acyl benzotriazoles and p-toluenesulfonylmethyl isocyanide (TosMIC) to afford 4,5-disubstituted oxazoles. In the presence of 3 equiv of K3PO4, the two readily available starting materials reacted in N,N-dimethylformamide at 80 °C to give 28 examples of 4-tosyl-5-aryl, -alkyl, or -alkenyl-substituted oxazoles in moderate to high yields. Key words Key wordsoxazole synthesis - N-acyl benzotriazole - p-toluenesulfonylmethyl isocyanide Volltext Referenzen References and Notes 1a Turchi IJ. Oxazoles . In Chemistry of Heterocyclic Compounds, Vol. 45 . John Wiley & Sons; Hoboken: 1986 1b Palmer DC. Oxazoles: Synthesis, Reactions, and Spectroscopy, Part A. John Wiley & Sons; Hoboken: 2003 1c Palmer DC. Oxazoles: Synthesis, Reactions, and Spectroscopy, Part B. John Wiley & Sons; Hoboken: 2004 2a Swellmeen L. Pharma Chem. 2016; 8: 269 2b Kakkar S, Narasimhan B. BMC Chem. 2019; 13: 16 3a Ochędzan-Siodłak W, Siodłak D, Banaś K, Halikowska K, Wierzba S, Doležal K. Catalysts 2021; 11: 923 3b Bai Y.-Q, Wang X.-W, Wu B, Wang X.-Q, Liao R.-Z, Li M, Zhou Y.-G. ACS Catal. 2023; 13: 9829 3c Wang J, Xie Q.-X, Li X, Yu C.-B, Zhou Y.-G. Chin. J. Chem. 2024; 42: 705 4a Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389 4b Kadu VD. ChemistrySelect 2022; 7: e202104028 5a Wasserman HH, Vinick FJ. J. Org. Chem. 1973; 38: 2407 5b Zhou R.-R, Cai Q, Li D.-K, Zhuang S.-Y, Wu Y.-D, Wu A.-X. J. Org. Chem. 2017; 82: 6450 5c Mukku N, Madivalappa Davanagere P, Chanda K, Maiti B. ACS Omega 2020; 5: 28239 6 Wang Z. Fischer Oxazole Synthesis. In Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons; Hoboken: 2010: 1076 7 Bredereck H, Bangert R. Angew. Chem., Int. Ed. Engl. 1962; 1: 662 8a Kulkarni BA, Ganesan A. Tetrahedron Lett. 1999; 40: 5633 8b Zheng X, Liu W, Zhang D. Molecules 2020; 25: 1594 9a Kumar MP, Liu R.-S. J. Org. Chem. 2006; 71: 4951 9b Gao W.-C, Hu F, Huo Y.-M, Chang H.-H, Li X, Wei W.-L. Org. Lett. 2015; 17: 3914 9c Mallick RK, Prabagar B, Sahoo AK. J. Org. Chem. 2017; 82: 10583 9d Zhao Y, Hu Y, Wang C, Li X, Wan B. J. Org. Chem. 2017; 82: 3935 10a He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482 10b Zheng M, Huang L, Huang H, Li X, Wu W, Jiang H. Org. Lett. 2014; 16: 5906 10c Reddy MR, Reddy GN, Mehmood U, Hussein IA, Rahman SU, Harrabi K, Subba Reddy BV. Synthesis 2015; 47: 3315 10d Han X.-L, Zhou C.-J, Liu X.-G, Zhang S.-S, Wang H, Li Q. Org. Lett. 2017; 19: 6108 10e Yang W, Zhang R, Yi F, Cai M. J. Org. Chem. 2017; 82: 5204 10f Pan J, Li X, Qiu X, Luo X, Jiao N. Org. Lett. 2018; 20: 2762 10g Zimin DP, Dar’in DV, Kukushkin VY, Dubovtsev AY. J. Org. Chem. 2021; 86: 1748 10h Mazibuko M, Jeena V. J. Org. Chem. 2023; 88: 1227 11a Chatterjee T, Cho JY, Cho EJ. J. Org. Chem. 2016; 81: 6995 11b Chen L, Li H, Li P, Wang L. Org. Lett. 2016; 18: 3646 11c Zhang X, He Y, Li J, Wang R, Gu L, Li G. J. Org. Chem. 2019; 84: 8225 11d Bracken C, Baumann M. J. Org. Chem. 2020; 85: 2607 11e Newar UD, Borra S, Maurya RA. Org. Lett. 2022; 24: 4454 11f Li M, He Z, Zhao W, Yu Y, Huang F, Baell JB. J. Org. Chem. 2023; 88: 8257 11g Saha A, Sen C, Guin S, Das C, Maiti D, Sen S, Maiti D. Angew. Chem. Int. Ed. 2023; 62: e202308916 11h Beg MZ, Tivari S, Kashyap A, Singh PK, Singh PP, Nainwal P, Srivastava V. J. Heterocycl. Chem. 2024; 61: 458 12a Hu J, Hong H, Qin Y, Hu Y, Pu S, Liang G, Huang Y. Org. Lett. 2021; 23: 1016 12b Bao L, Liu C, Li W, Yu J, Wang M, Zhang Y. Org. Lett. 2022; 24: 5762 13a Baumann M, Baxendale IR, Ley SV, Smith CD, Tranmer GK. Org. Lett. 2006; 8: 5231 13b Li B, Buzon RA, Zhang Z. Org. Process Res. Dev. 2007; 11: 951 13c Brahma S, Ray JK. J. Heterocycl. Chem. 2008; 45: 311 13d Wu B, Wen J, Zhang J, Li J, Xiang Y.-Z, Yu X.-Q. Synlett 2009; 500 14 Leusen DV, Leusen AM. V. Synthetic Uses of Tosylmethyl Isocyanide (TosMIC) . In Org. React. . Wiley; Hoboken: 2004: 417 15a van Nispen SP. J. M, Mensink CM, van Leusen A. Tetrahedron Lett. 1980; 21: 3723 15b Shao P.-L, Liao J.-Y, Ho YA, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 5435 15c Rajeev N, Swaroop TR, Anil SM, Kiran KR, Rangappa KS, Sadashiva MP. J. Chem. Sci. 2018; 130: 150 15d Talebizadeh M, Darehkordi A, Anary-Abbasinejad M. ARKIVOC 2018; (v): 194 15e Necardo C, Alfano AI, Del Grosso E, Pelliccia S, Galli U, Novellino E, Meneghetti F, Giustiniano M, Tron GC. J. Org. Chem. 2019; 84: 16299 15f Prabhala P, Sutar SM, Manjunatha MR, Pawashe GM, Gupta VK, Naik L, Kalkhambkar RG. J. Mol. Liq. 2022; 360: 119520 16a Katritzky AR, Lan X, Yang JZ, Denisko OV. Chem. Rev. 1998; 98: 409 16b The Chemistry of Benzotriazole Derivatives. In Topics in Heterocyclic Chemistry, Vol. 43. Monbaliu J.-CM. Springer; Switzerland: 2016 17a Qu E, Li S, Bai J, Zheng Y, Li W. Org. Lett. 2021; 24: 58 17b Bai J, Li S, Zhu R, Li Y, Li W. J. Org. Chem. 2023; 88: 3714 17c Bai J, Qu E, Li S, Zhu R, Deng Q, Li W. Org. Chem. Front. 2023; 10: 5158 17d Zhu R, Li Y, Pan M, Shen Y, Li W. Tetrahedron 2023; 145: 133608 18 General Procedure for the K3PO4-Promoted Cyclization between N-Acyl Benzotriazoles and TosMIC An oven-dried Schlenk tube was sequentially charged with N-acyl benzotriazole (0.2 mmol), TosMIC (46.9 mg, 0.24 mmol), and K3PO4 (55.3 mg, 0.6 mmol) under N2. Then the Schlenk tube was capped with a rubber septum before connecting to Schlenk line. Then DMF (2 mL) was added with an injector. The perimeter of the septum was carefully sealed with parafilm. Then the mixture was allowed for stirring at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with 5 mL water and extracted with EtOAc (3 × 3 mL). The combined organic phase was washed with brine, dried over anhydrous Na2SO4, and concentrated by rotoevaporation. The desired product was purified by flash column chromatography (petroleum ether (PE)/EtOAc). 5-(Thiophen-2-yl)-4-tosyloxazole (3r) The compound was isolated as a white solid (49.1 mg, 80%) by flash column chromatography (PE/EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 8.09 (d, J = 2.6 Hz, 1 H), 7.92 (d, J = 8.3 Hz, 2 H), 7.76 (s, 1 H), 7.56 (d, J = 3.9 Hz, 1 H), 7.31 (d, J = 8.1 Hz, 2 H), 7.20–7.15 (m, 1 H), 2.40 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 148.4, 148.0, 145.0, 137.1, 133.2, 131.4, 130.3, 129.8, 128.2, 127.9, 126.4, 21.6. HRMS (ESI+): m/z [M + Na]+ calcd for C14H11NO3S2Na: 328.0078; found: 328.0078. 5-(Furan-2-yl)-4-tosyloxazole (3s) The compound was isolated as a white solid (41.6 mg, 72%) by flash column chromatography (PE/EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 7.92 (d, J = 8.4 Hz, 2 H), 7.80 (s, 1 H), 7.62 (d, J = 1.0 Hz, 1 H), 7.57 (d, J = 3.5 Hz, 1 H), 7.32 (d, J = 8.1 Hz, 1 H), 6.61 (dd, J = 3.6, 1.8 Hz, 1 H), 2.41 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 148.8, 145.2, 145.1, 144.0, 140.4, 137.1, 133.5, 129.8, 128.0, 116.1, 112.5, 21.6. 5-(4-Ethylthiazol-5-yl)-4-tosyloxazole (3t) The compound was isolated as a white solid (39.0 mg, 64%) by flash column chromatography (PE/EtOAc, 10:1). 1H NMR (500 MHz, CDCl3): δ = 8.93 (s, 1 H), 7.95 (s, 1 H), 7.87 (d, J = 8.3 Hz, 2 H), 7.41 (dt, J = 6.3, 3.4 Hz, 1 H), 7.32 (d, J = 8.1 Hz, 2 H), 2.55 (s, 3 H), 2.41 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 156.7, 155.3, 150.5, 145.4, 145.0, 137.9, 136.5, 129.9, 128.2, 125.7, 114.6, 21.6, 17.0. HRMS (ESI+): m/z [M + Na]+ calcd for C14H12N2O3S2Na: 343.0187; found: 343.0185. 19a Qu E, Li S, Bai J, Zheng Y, Li W. Org. Lett. 2022; 24: 58 19b Zhu R, Li Y, Shen Y, Pan M, Dong W, Li W. Org. Chem. Front. 2024; 11: 2095 20 Mathiyazhagan AD, Anilkumar G. Org. Biomol. Chem. 2019; 17: 6735 Zusatzmaterial Zusatzmaterial Supporting Information