Subscribe to RSS
DOI: 10.1055/a-2361-0011
Asymmetric Organocatalytic Benzylation of Morita–Baylis–Hillman Carbonates with 2,4-Dinitrotoluene Derivatives
We are grateful for the financial support from National Science and Technology Council, Taiwan (112-2113-M-005-004).
Dedicated to Prof. Chi-Wi Ong on the occasion of his retirement
Abstract
The organocatalytic asymmetric benzylation of Morita–Baylis–Hillman (MBH) carbonates with 2,4-dinitrotoluene derivatives as nucleophiles is described. The developed reaction provides a straightforward access to functionalized 2,4-dinitrotoluene derivatives of biological and synthetic relevance. Highly functionalized products have been chemoselectively and efficiently obtained in good to high yields (up to 84%) and with excellent stereoselectivity (up to >20:1 dr, >99 ee).
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2361-0011.
- Supporting Information
Publication History
Received: 04 June 2024
Accepted after revision: 05 July 2024
Accepted Manuscript online:
05 July 2024
Article published online:
29 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lee M, Hesek D, Mobashery S. J. Org. Chem. 2005; 70: 367
- 2a Janik B, Elving PJ. Chem. Rev. 1968; 68: 295
- 2b Michael JP. Nat. Prod. Rep. 2005; 22: 603
- 2c Michael JP. Nat. Prod. Rep. 2005; 22: 627
- 2d Laird T. Org. Process Res. Dev. 2006; 10: 851
- 2e Bagley MC, Glover C, Merritt EA. Synlett 2007; 2459
- 3a Cho J.-H, Jung K.-Y, Jung Y, Kim MH, Ko H, Park C.-S, Kim Y.-C. Eur. J. Med. Chem. 2013; 70: 811
- 3b Aslanian R, Mutahi MW, Shih N.-Y, Piwinski JJ, West R, Williams SM, She S, Wu R.-L, Hey JA. Bioorg. Med. Chem. Lett. 2003; 13: 1959
- 3c Fuller RW, Bymaster FP, Perry KW, Wong DT. J. Pharm. Pharmacol. 1978; 30: 197
- 4a Tabuchi S, Hirano K, Miura M. Angew. Chem. Int. Ed. 2016; 55: 6973
- 4b Najib A, Hirano K, Miura M. Org. Lett. 2017; 19: 2438
- 4c Moon PJ, Wei Z, Lundgren RJ. J. Am. Chem. Soc. 2018; 140: 17418
- 4d Schwarz KJ, Yang C, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2018; 57: 12102
- 4e Song C, Zhang H.-H, Yu S. ACS Catal. 2022; 12: 1428
- 4f Chen S, Tan J, Xiong D, Shang Y, Mao J, Walsh PJ. Org. Chem. Front. 2022; 9: 2721
- 5a Zhu YB, Zhang WZ, Zhang L, Luo SZ. Chem. Eur. J. 2017; 23: 1253
- 5b Dell Amico L, Fernandez-Alvarez VM, Maseras F, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 3304
- 5c Filippini G, Silvi M, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 4447
- 5d Mazzarella D, Crisenza GE. M, Melchiorre P. J. Am. Chem. Soc. 2018; 140: 8439
- 6a Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
- 6b Xie P, Huang Y. Org. Biomol. Chem. 2015; 13: 8578
- 6c Zhong N.-J, Wang Y.-Z, Cheng L, Wang D, Liu L. Org. Biomol. Chem. 2018; 16: 5214
- 7a Li Z, Frings M, Yu H, Raabe G, Bolm C. Org. Lett. 2018; 20: 7367
- 7b Formánek B, Šimek M, Kamlar M, Císařová I, Veselý J. Synthesis 2019; 51: 907
- 7c Hu YM, Shi WY, Zheng B, Liao JN, Wang W, Wu YJ, Guo HC. Angew. Chem. Int. Ed. 2020; 59: 19820
- 7d Tan CX. A, Mei GJ, Lu YX. Org. Lett. 2021; 23: 1787
- 7e Mando M, Fares M, Kowandy C, Grellepois F, Riguet E. Org. Lett. 2022; 24: 5351
- 8a Ceban V, Putaj P, Meazza M, Pitak MB, Coles SJ, Vesely J, Rios R. Chem. Commun. 2014; 50: 7447
- 8b Kowalczyk-Dworak D, Kwit M, Albrecht Ł. J. Org. Chem. 2020; 85: 2938
- 9a Kayal S, Mukherjee S. Org. Lett. 2017; 19: 4944
- 9b Kowalczyka D, Albrecht Ł. Adv. Synth. Catal. 2018; 362: 406
- 10 Xu J.-X, Chu K.-D, Chiang M.-H, Han J.-L. Org. Biomol. Chem. 2021; 19: 1503
- 11a Li T, Zhu J, Wu D, Li X, Wang S, Li H, Li J, Wang W. Chem. Eur. J. 2013; 19: 9147
- 11b Dell’Amico L, Companyó X, Naicker T, Bräuer TM, Jørgensen KA. Eur. J. Org. Chem. 2013; 5262
- 11c Li XM, Wang SN, Li TF, Li J, Li H, Wang W. Org. Lett. 2013; 15: 5634
- 11d Raja A, Hong BC, Lee GH. Org. Lett. 2014; 16: 5756
- 11e Duan JD, Cheng YY, Cheng J, Li R, Li PF. Chem. Eur. J. 2017; 23: 519
- 11f Mukherjee S, Ghosh A, Marelli UK, Biju AT. Org. Lett. 2018; 20: 2952
- 11g Zhao Q, Peng C, Huang H, Liu S.-J, Zhong Y.-J, Huang W, He G, Han B. Chem. Commun. 2018; 54: 8359
- 11h Wang B, Wang X.-H, Huang W, Zhou J, Zhu H.-P, Peng C, Han B. J. Org. Chem. 2019; 84: 10349
- 11i Chen X, An Y, Du G, Zhao Y, He L, Zhao J, Li S.-W. J. Org. Chem. 2022; 87: 5497
- 12a Han B, He X.-H, Liu Y.-Q, He G, Peng C, Li J.-L. Chem. Soc. Rev. 2021; 50: 1522
- 12b Cheng JK, Xiang S.-H, Tan B. Acc. Chem. Res. 2022; 55: 2920
- 12c Tan W, Zhang JY, Gao CH, Shi F. Sci. China Chem. 2023; 66: 966
- 12d Zhu Z.-Q, Li T.-Z, Liu S.-J, Shi F. Org. Chem. Front. 2024; 11: in press
- 13 Li S.-S, Fu S, Wang L, Xu L, Xiao J. J. Org. Chem. 2017; 82: 8703
- 14 The only differences compared to the standard reaction conditions are that we used 1.2 equivalents of 5a in 0.2 mL of 1,2-DCE instead of 1.5 equivalents of nucleophiles in 0.4 mL of 1,2-DCE.
- 15 See the Supporting Information for details.
- 16 CCDC 2355621 (6d) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
For selected examples of metal-catalyzed enantioselective benzylations, see:
For selected examples of organocatalyzed enantioselective benzylations, see:
For reviews about the reactions of MBH carbonates, see:
For selected recent examples of the use of MBH carbonates in an organocatalytic enantioselective allylic alkylation reaction, see:
For examples using coumarins as pronucleophiles, see: