Subscribe to RSS
DOI: 10.1055/a-2368-8554
Catalytic Asymmetric Syntheses of 3-Monosubstituted Oxindoles
We gratefully acknowledge the National Natural Science Foundation of China (92156008, 22161142016), the Taishan Scholar Program of Shandong Province, Shenzhen Special Funds (JCYJ20220530141205011), and the Natural Science Foundation of Shandong (ZR2020QB018).

Abstract
Chiral 3-monosubstituted oxindoles are privileged structural motifs in a variety of natural products and synthetic pharmaceuticals. However, catalytic asymmetric syntheses of these structural motifs remain challenging, mainly because of the ease of racemization of the tertiary stereocenter through enolization. In this short review, asymmetric synthetic methods for the preparation of chiral 3-monosubstituted oxindoles are summarized from the perspective of four different strategies, including Michael addition, carbenoid-mediated C–H insertion, decarboxylative protonation, and indole oxidation.
1 Introduction
2 Asymmetric Michael Addition
3 Asymmetric Carbenoid-Mediated C–H Insertion
4 Asymmetric Decarboxylative Protonation
5 Asymmetric Indole Oxidation
6 Others
7 Conclusion
Key words
3-monosubstituted oxindole - asymmetric catalysis - asymmetric synthesis - synthetic method - bioactive moleculesPublication History
Received: 26 June 2024
Accepted after revision: 17 July 2024
Accepted Manuscript online:
18 July 2024
Article published online:
08 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 1b Trost BM, Brennan MK. Synthesis 2009; 3003
- 1c Bergman J. Oxindoles . In Advances in Heterocyclic Chemistry, Vol. 117. Scriven EF. V, Ramsden CA. Elsevier; Amsterdam: 2015: 1
- 1d Kaur M, Singh M, Chadha N, Silakari O. Eur. J. Med. Chem. 2016; 123: 858
- 1e Kaur M. Oxindole: A Nucleus Enriched with Multitargeting Potential Against Complex Disorders. In Key Heterocycle Cores for Designing Multitargeting Molecules, Chap. 6. Silakari O. Elsevier; Amsterdam: 2018: 211
- 1f Khetmalis YM, Shivani M, Murugesan S, Chandra Sekhar KV. G. Biomed. Pharmacother. 2021; 141: 111842
- 1g Duan Y, Liu Y, Huang T, Zou Y, Huang T, Hu K, Deng Z, Lin S. Org. Biomol. Chem. 2018; 16: 5446
- 2a Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 2b Shen K, Liu X, Lin L, Feng X. Chem. Sci. 2012; 3: 327
- 2c Dalpozzo R. Org. Chem. Front. 2017; 4: 2063
- 2d Ziarani GM, Moradi R, Lashgari N. Tetrahedron 2018; 74: 1323
- 2e Freckleton M, Baeza A, Benavent L, Chinchilla R. Asian J. Org. Chem. 2018; 7: 1006
- 2f Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
- 2g Marchese AD, Larin EM, Mirabi B, Lautens M. Acc. Chem. Res. 2020; 53: 1605
- 2h Xu L, Chen H, Liu J, Zhou L, Liu Q, Lan Y, Xiao J. Org. Chem. Front. 2019; 6: 1162
- 2i Wang L, Chen Y, Xiao J. Asian J. Org. Chem. 2014; 3: 1036
- 2j Zhu S, Xu L, Wang L, Xiao J. Chin. J. Org. Chem. 2016; 36: 1229
- 3a Tsuda M, Mugishima T, Komatsu K, Sone T, Tanaka M, Mikami Y, Shiro M, Hirai M, Ohizumi Y, Kobayashi J. Tetrahedron 2003; 59: 3227
- 3b Bhat V, MacKay JA, Rawal VH. Tetrahedron 2011; 67: 10097
- 3c Nakanishi K, Doi M, Usami Y, Amagata T, Minoura K, Tanaka R, Numata A, Yamada T. Tetrahedron 2013; 69: 4617
- 3d Um S, Bach D.-H, Shin B, Ahn C.-H, Kim S.-H, Bang H.-S, Oh K.-B, Lee SK, Shin J, Oh D.-C. Org. Lett. 2016; 18: 5792
- 4a Bordwell FG, Fried HE. J. Org. Chem. 1991; 56: 4218
- 4b Huang Z, Liu Z, Zhou JS. J. Am. Chem. Soc. 2011; 133: 15882
- 5a Pesciaioli F, Righi P, Mazzanti A, Bartoli G, Bencivenni G. Chem. Eur. J. 2011; 17: 2842
- 5b Bencivenni G, Wu LY, Mazzanti A, Giannichi B, Pesciaioli F, Song MP, Bartoli G, Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 7200
- 6 Duan S.-W, Lu H.-H, Zhang F.-G, Xuan J, Chen J.-R, Xiao W.-J. Synthesis 2011; 1847
- 7 Quintavalla A, Lanza F, Montroni E, Lombardo M, Trombini C. J. Org. Chem. 2013; 78: 12049
- 8 Qin W.-B, Lou Q, Xiong W, Liu G.-K. Tetrahedron Lett. 2020; 61: 152443
- 9 Zhou J, Wang Q.-L, Peng L, Tian F, Xu X.-Y, Wang L.-X. Chem. Commun. 2014; 50: 14601
- 10 Zhao H, Xiao M, Xu L, Wang L, Xiao J. RSC Adv. 2016; 6: 38558
- 11 Kumari A, Kaur J, Bhardwaj VK, Chimni SS. Eur. J. Org. Chem. 2018; 4081
- 12 Zhou J, Jia L.-N, Wang Q.-L, Peng L, Tian F, Xu X.-Y, Wang L.-X. Tetrahedron 2014; 70: 8665
- 13 Lenhart D, Bauer A, Pöthig A, Bach T. Chem. Eur. J. 2016; 22: 6519
- 14 Sato R, Tosaka T, Masu H, Arai T. J. Org. Chem. 2019; 84: 14248
- 15a Freund MH, Tsogoeva SB. Synlett 2011; 503
- 15b Zhou Z, Feng X, Yin X, Chen Y.-C. Org. Lett. 2014; 16: 2370
- 15c Ball-Jones NR, Badillo JJ, Tran NT, Franz AK. Angew. Chem. Int. Ed. 2014; 53: 9462
- 15d Ohmatsu K, Morita Y, Kiyokawa M, Ooi T. J. Am. Chem. Soc. 2021; 143: 11218
- 16 Hashimoto T, Yamamoto K, Maruoka K. Chem. Commun. 2014; 50: 3220
- 17 Li N, Yang X, Zhu Y, Wang F, Gong J, Song M. Chin. Chem. Lett. 2022; 33: 2437
- 18 Xu G, Huang M, Zhang T, Shao Y, Tang S, Cao H, Zhang X, Sun J. Org. Lett. 2022; 24: 2809
- 19 Hua R.-Y, Yu S.-F, Jie X.-T, Qiu H, Hu W.-H. Angew. Chem. Int. Ed. 2022; 61: e202213407
- 20 Qiu H, Li M, Jiang L.-Q, Lv F.-P, Zan L, Zhai C.-W, Doyle MP, Hu W.-H. Nat. Chem. 2012; 4: 733
- 21 Biosca M, Jackson M, Magre M, Pàmies O, Norrby P.-O, Diéguez M, Guiry PJ. Adv. Synth. Catal. 2018; 360: 3124
- 22a Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
- 22b Xu J, Liang L, Zheng H, Chi YR, Tong R. Nat. Commun. 2019; 10: 4754
- 22c Mondal P, Rajapakse S, Wijeratne GB. J. Am. Chem. Soc. 2022; 144: 3843
- 22d Jiang S.-Y, Shi J, Wang W, Sun Y.-Z, Wu W, Song J.-R, Yang X, Hao G.-F, Pan W.-D, Ren H. ACS Catal. 2023; 13: 3085
- 23 Li S, Liu X, Tung Z.-H, Liu L. J. Am. Chem. Soc. 2023; 145: 27120
- 24 Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
- 25 Ye X.-Y, Liang Z.-Q, Jin C, Lang Q.-W, Chen G.-Q, Zhang X. Chem. Commun. 2021; 57: 195