Synlett 2025; 36(04): 307-310 DOI: 10.1055/a-2377-0118
Temperature-Controlled Synthesis of Thiophenol-VBXs from EBXs and Thiophenols
Jun Li
,
Chuang Zhou∗
,
Lian-Mei Chen∗
,
Xing-Yu Chen
,
Xiao-Qiang Guo∗
,
We are grateful for financial support from the National Natural Science Foundation of China (NO. 21672172), the project of the Youth Science and Technology Innovation Team of Sichuan Province, China (NO. 2017TD0008), and Sichuan Science and Technology Program of China (NO. 2022YFS0435).
Abstract
Vinylbenziodoxolones (VBXs) are important electrophilic alkene synthons. However, the synthesis of cis -thiophenol-VBX reagents from ethynylbenziodoxolones (EBXs) and thiophenols remains challenging. Herein, we explore an efficient method for the synthesis of cis -thiophenol-VBXs in excellent yield with excellent regio- and stereoselectivities from EBXs and thiophenols under temperature-controlled conditions.
Key words
vinylbenziodoxolones -
ethynylbenziodoxolones -
iodine(III) -
thiophenols -
temperature control
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2377-0118.
Supporting Information
Publication History
Received: 12 June 2024
Accepted after revision: 31 July 2024
Accepted Manuscript online: 31 July 2024
Article published online: 30 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
Selected reviews, see:
1a
Wang D,
Li Q,
Li M,
Du Z,
Fu Y.
Curr. Org. Chem. 2021; 25: 1298
1b
Wang Y,
An G,
Wang L,
Han J.
Curr. Org. Chem. 2020; 24: 2070
Selected reviews, see:
2a
Irina AM,
Dmitrii MN,
Akira Y,
Mekhman SY,
Viktor VZ.
Molecules 2023; 28: 2136
2b
Du EL,
Waser J.
Chem. Commun. 2023; 59: 1589
3
Liu YW,
Dietl MC,
Han CY,
Rudolph M,
Rominger F,
Krämer P,
Hashmi AS. K.
Org. Lett. 2022; 24: 7101
4a
Frei R,
Waser J.
J. Am. Chem. Soc. 2013; 135: 9620
4b
Frei R,
Wodrich MD,
Hari DP,
Borin PA,
Chauvier C,
Waser J.
J. Am. Chem. Soc. 2014; 136: 16563
5
Li M,
Wang JH,
Li W,
Wen LR.
Org. Lett. 2018; 20: 7694
6a
Stridfeldt E,
Seemann A,
Bouma MJ,
Dey C,
Ertan A,
Olofsson B.
Chem. Eur. J. 2016; 22: 16066
6b
Caramenti P,
Declas N,
Tessier R,
Wodrich MD,
Waser J.
Chem. Sci. 2019; 10: 3223
6c
Adusumalli SR,
Bernardes GJ. L.
Chem 2019; 5: 1932
6d
Vaillant FL,
Garreau M,
Nicolai S,
Grynóva G,
Corminboeuf C,
Waser J.
Chem. Sci. 2018; 9: 5883
6e
Castoldi L,
Tommaso EM. D,
Reitti M,
Gräfen B,
Olofsson B.
Angew. Chem. Int. Ed. 2020; 59: 15512
6f
Castoldi L,
Rajkiewicz AA,
Olofsson B.
Chem. Commun. 2020; 56: 14389
7a
Liu B,
Lim C,
Miyake GM.
J. Am. Chem. Soc. 2018; 140: 12829
7b
Wang LF,
Shi CR,
Qi W,
Xu J,
Xiong WF,
Kang BX,
Jiang HF.
Chem. Sci. 2021; 12: 11821
7c
Ura T,
Shimbo D,
Yudasaka M,
Tada N,
Itoh A.
Chem. Asian J. 2020; 15: 4000
7d
Woo SY,
Kim JH,
Moon MK,
Han SH,
Yeon SK,
Choi JW,
Jang BK,
Song HJ,
Kang YG,
Kim JW,
Lee J,
Kim DJ,
Hwang O,
Park KD.
J. Med. Chem. 2014; 57: 1473
7e
Song ZL,
Hou Y,
Bai FF,
Fang JG.
Bioorg. Chem. 2021; 107: 104520
8a
Wu J,
Deng X,
Hirao H,
Yoshikai N.
J. Am. Chem. Soc. 2016; 138: 9105
8b
Wu J,
Xu K,
Hirao H,
Yoshikai N.
Chem. Eur. J. 2017; 23: 1521
9a
Kitamura T,
Fukuoka T,
Fujiwara Y.
Synthesis 1996; 7: 659
9b
Shimbo D,
Maruyama T,
Tada N,
Itoh A.
Org. Biomol. Chem. 2021; 19: 2442
9c
Kikuchi J,
Maesaki K,
Sasaki S,
Wang W,
Ito S,
Yoshikai N.
Org. Lett. 2022; 24: 6914
10
Wu J,
Deng X,
Yoshikai N.
Chem. Eur. J. 2019; 25: 7839
11a
Tessier R,
Ceballos J,
Guidotti N,
Simonet-Davin R,
Fierz B,
Waser J.
Chem 2019; 5: 2243
11b
Liu B,
AlegreRequena JV,
Paton RS,
Miyake GM.
Chem. Eur. J. 2020; 26: 2386
12a
Zhu Y.-S,
Xue Y,
Liu W,
Zhu X,
Hao X.-Q,
Song M.-P.
J. Org. Chem. 2020; 85: 9106
12b
Kao TT,
Peng BK,
Liang MC,
Lee CJ,
Chen IC,
Shia KS,
Wen YK.
J. Org. Chem. 2018; 83: 14688
12c
Houck HA,
Bruycker KD,
Kowollik CB,
Winne JM,
Prez FE. D.
Macromolecules 2018; 51 (08) 3156
12d
Chang MY,
Chen HY,
Tsai YL.
J. Org. Chem. 2019; 84: 326
12e
Li L,
Che YK,
Gross DE,
Huang HL,
Moore JS,
Zang L.
ACS Macro Lett. 2012; 1: 1335
12f
Koizumi H,
Shiraishi Y,
Hirai T.
J. Phys. Chem. B 2008; 112: 13238
13a
He SD,
Guo XQ,
Li J,
Zhang YC,
Chen LM,
Kang TR.
Eur. J. Org. Chem. 2022; e202200516
13b
Sun X,
Guo XQ,
Chen LM,
Kang TR.
Chem. Eur. J. 2021; 27: 4312
13c
Li J,
Zhou C,
Liang H,
Guo XQ,
Chen LM,
Kang TR.
Eur. J. Org. Chem. 2022; 30: 177
13d
Xia AJ,
Kang TR,
He L,
Chen LM,
Li WY,
Yang JL,
Liu QZ.
Angew. Chem. Int. Ed. 2016; 55: 1441
13e
Nie X,
Wang Y,
Yang L,
Yang Z,
Kang T.
Tetrahedron Lett. 2017; 58: 3003
13f
Zeng L,
Guo XQ,
Yang ZJ,
Gan Y,
Chen LM,
Kang TR.
Tetrahedron Lett. 2019; 60: 150943
13g
Chen LM,
Zhao J,
Xia A.-J,
Guo XQ,
Gan Y,
Zhou C,
Yang ZJ,
Yang J,
Kang TR.
Org. Biomol. Chem. 2019; 17: 8561
13h
Chen LM,
Zhou C,
Li J,
Li J,
Guo XQ,
Kang TR.
Org. Biomol. Chem. 2022; 20: 7011
13i
Chen Y,
Guo X,
Zhou C,
Chen L,
Kang TR.
Synlett 2019; 30: 851
13j
Chen L,
Liu Z,
Nie X,
Guo XQ,
Kang TR.
Synlett 2018; 29: 2390
13k
Du X,
Jiang H,
Guo X,
Chen L,
Kang T.
React. Funct. Polym. 2021; 169: 105061
13l
Liu QP,
Chen LM,
Zhou C,
Guo XQ,
Kang TR.
Asian J. Org. Chem. 2023; e20220061
14
Wodrich MD,
Caramenti P,
Waser J.
Org. Lett. 2016; 18: 60
15
Typical Procedure and Characterization Data for 3a : Compound 1a (0.2 mmol, 1.0 equiv), ethanol (2 mL), and Et3 N (0.3 mmol, 1.5 equiv) were added to a flask. The mixture was cooled at –50 °C in a low-temperature reactor. 4-Methylthiophenol 2a (0.22 mmol, 1.1 equiv) was added and the reaction mixture was stirred at –50 °C until 1a was consumed (monitored by TLC). The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography on silica gel (CH2 Cl2 /MeOH) to give pure product 3a (97%, 91.6 mg) as a white solid; mp 162.7–163.5 °C. Rf
= 0.30 (CH2 Cl2 /MeOH, 20:1). 1 H NMR (600 MHz, DMSO-d
6 ): δ = 8.14 (d, J = 7.3 Hz, 1 H), 7.74 (t, J = 7.5 Hz, 1 H), 7.69 (d, J = 8.3 Hz, 1 H), 7.65 (t, J = 7.3 Hz, 1 H), 7.63–7.59 (m, 3 H), 7.31 (d, J = 6.3 Hz, 3 H), 7.09 (d, J = 7.8 Hz, 2 H), 6.95 (dd, J = 8.3, 2.8 Hz, 2 H), 2.10 (d, J = 3.5 Hz, 3 H). 13 C NMR (150 MHz, DMSO-d
6 ): δ = 166.19, 157.44, 138.26, 136.94, 135.11, 134.17, 132.31, 132.10, 130.96, 130.56, 130.39, 129.35, 129.15, 128.78, 128.64, 127.89, 115.73, 109.95, 21.04. HRMS: m /z [M + Na]+ calcd for C22 H17 IO2 S: 494.9886; found: 494.9890.