Diabetologie und Stoffwechsel 2024; 19(06): 433-443
DOI: 10.1055/a-2377-7108
Übersicht

C-Peptid als Surrogatparameter einer residualen Beta-Zellfunktion bei Typ-1-Diabetes und ihre mögliche klinische Bedeutung

C-Peptide as a Surrogate Parameter of Residual Beta Cell Function in Type 1 Diabetes and its Potential Clinical Significance
Dirk Müller-Wieland
1   Klinik für Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum RWTH Aachen, Aachen, Deutschland (Ringgold ID: RIN39058)
,
Martin Miszon
2   Sciarc GmbH, Baierbrunn, Deutschland
,
Désirée Dunstheimer
3   Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Augsburg, Augsburg, Deutschland (Ringgold ID: RIN39694)
,
Thomas Forst
4   Clinical Research, CRS Clinical Research Services Mannheim GmbH, Mannheim, Deutschland (Ringgold ID: RIN217310)
,
Thomas Michael Kapellen
5   Klinik für Kinder und Jugendliche, Universität Leipzig, Leipzig, Deutschland (Ringgold ID: RIN9180)
,
Oliver Schnell
2   Sciarc GmbH, Baierbrunn, Deutschland
,
Monika Kellerer
6   Zentrum für Innere Medizin, Marienhospital Stuttgart, Stuttgart, Deutschland (Ringgold ID: RIN39659)
› Author Affiliations
Supported by: Die Erstellung der Publikation wurde durch Sanofi unterstützt.

Zusammenfassung

C-Peptid, ein Molekül, welches in äquimolarer Konzentration zu Insulin produziert wird, hat sich als Biomarker für die Insulinsekretion bei Menschen mit Typ-1-Diabetes etabliert. Die Messung des C-Peptidspiegels kann in der klinischen Praxis hilfreich sein, um die Restfunktion der insulinproduzierenden β-Zellen zu beurteilen, insbesondere bei Menschen unter Insulintherapie. Sinkende C-Peptidwerte spiegeln dabei eine Verschlechterung der β-Zellfunktion wider. Während die C-Peptid-Sekretion in den ersten Monaten nach Diagnosestellung des Typ-1-Diabetes ein zuverlässiger Prädiktor für eine klinische Teilremission sein kann, gibt es zunehmend Hinweise auf eine persistierende β-Zellfunktion bei Menschen mit langjährigem Typ-1-Diabetes. Bei der Mehrzahl der Menschen mit langjährigem Typ-1-Diabetes ist C-Peptid auch in geringen Mengen nachweisbar, insbesondere wenn hochempfindliche Assays verwendet werden. Trotz erheblicher Fortschritte in der Insulintherapie erreichen in Deutschland nur etwa 44% der Menschen mit Typ-1-Diabetes eine ausreichende Glukoseeinstellung, um Langzeitkomplikationen zu vermeiden. Die Verbesserung der Überlebensrate der verbleibenden β-Zellen, gemessen an der erhaltenen C-Peptid-Konzentration, steht im Mittelpunkt vieler krankheitsmodifizierender Studien. Eine krankheitsmodifizierende Therapie zur Erhaltung der β-Zellfunktion könnte eine alternative oder ergänzende Behandlungsoption zur Insulintherapie bei Typ-1-Diabetes darstellen. Ziel dieser Übersichtsarbeit ist es, die Bedeutung des C-Peptids und seine Rolle bei der Diagnose, Überwachung und Behandlung des Typ-1-Diabetes darzustellen.

Abstract

C-peptide, a molecule produced in equimolar concentration to insulin, has been established as a biomarker for insulin secretion in individuals with type 1 diabetes. The measurement of C-peptide levels can be beneficial in clinical practice for the assessment of residual insulin-producing β-cell function, particularly in individuals undergoing insulin therapy. A decline in C-peptide levels is indicative of a deterioration in β-cell function. While C-peptide secretion in the initial months following the diagnosis of type-1-diabetes can be a reliable predictor of clinical partial remission, there is mounting evidence of persistent β-cell function in individuals with long-standing type 1 diabetes. In the majority of individuals with long-standing type 1 diabetes, C-peptide is detectable, particularly when highly sensitive assays are employed. Despite significant advancements in insulin therapy, only approximately 44% of individuals with type-1-diabetes in Germany achieve adequate glucose control to prevent long-term complications. The focus of numerous disease-modifying studies is to enhance the survival rate of residual β-cells, as measured by the maintained C-peptide concentration. Disease-modifying therapy to preserve β-cell function represents a potential alternative or complementary treatment option to insulin therapy in type-1-diabetes. The objective of this review is to elucidate the significance of C-peptide and its function in the diagnosis, monitoring, and treatment of type-1-diabetes.



Publication History

Received: 17 June 2024

Accepted after revision: 30 July 2024

Article published online:
04 December 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Roep BO, Thomaidou S, van Tienhoven R. et al. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature Reviews Endocrinology 2021; 17: 150-161
  • 2 Insel RA, Dunne JL, Atkinson MA. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015; 38: 1964-1974
  • 3 Liu M, Weiss MA, Arunagiri A. et al. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, obesity & metabolism 2018; (20) 28-50
  • 4 Steiner DF, Cunningham D, Spigelman L. et al. Insulin biosynthesis: evidence for a precursor. Science 1967; 157: 697-700
  • 5 Piccinini F, Bergman RN. The Measurement of Insulin Clearance. Diabetes Care 2020; 43: 2296-2302
  • 6 Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34: 198-215
  • 7 Polonsky KS, Licinio-Paixao J, Given BD. et al. Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. J Clin Invest 1986; 77: 98-105
  • 8 Licinio-Paixao J, Polonsky KS, Given BD. et al. Ingestion of a mixed meal does not affect the metabolic clearance rate of biosynthetic human C-peptide. The Journal of clinical endocrinology and metabolism 1986; 63: 401-403
  • 9 Utzschneider KM, Kahn SE, Polidori DC. Hepatic Insulin Extraction in NAFLD Is Related to Insulin Resistance Rather Than Liver Fat Content. The Journal of clinical endocrinology and metabolism 2019; 104: 1855-1865
  • 10 KVNO. Qualitätsbericht 2021 Disease-Management-Programme in Nordrhein. 2021
  • 11 Nirantharakumar K, Mohammed N, Toulis KA. et al. Clinically meaningful and lasting HbA(1c) improvement rarely occurs after 5 years of type 1 diabetes: an argument for early, targeted and aggressive intervention following diagnosis. Diabetologia 2018; 61: 1064-1070
  • 12 Hao W, Gitelman S, DiMeglio LA. et al. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose. Diabetes Care 2016; 39: 1664-1670
  • 13 Nagy G, Szekely TE, Somogyi A. et al. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes 2022; 13: 835-850
  • 14 Heding LG. Radioimmunological determination of human C-peptide in serum. Diabetologia 1975; 11: 541-548
  • 15 Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabetic medicine : a journal of the British Diabetic Association 2013; 30: 803-817
  • 16 Little RR, Rohlfing CL, Tennill AL. et al. Standardization of C-peptide measurements. Clinical chemistry 2008; 54: 1023-1026
  • 17 Hörber S, Achenbach P, Schleicher E. et al. Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnology Advances 2020; 39: 107359
  • 18 Moore M, Dougall T, Ferguson J. et al. Preparation, calibration and evaluation of the First International Standard for human C-peptide. Clin Chem Lab Med 2017; 55: 1224-1233
  • 19 Hörber S, Orth M, Fritsche A. et al. Comparability of C-Peptide Measurements – Current Status and Clinical Relevance. Experimental and clinical endocrinology & diabetes. official journal, German Society of Endocrinology [and] German Diabetes Association 2023; 131: 173-178
  • 20 Pozzan R, Dimetz T, Gazzola HM. et al. The C-peptide response to a standard mixed meal in a group of Brazilian type 1 diabetic patients. Braz J Med Biol Res 1997; 30: 1169-1174
  • 21 Palmer JP, Fleming GA, Greenbaum CJ. et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21–22 October 2001. Diabetes 2004; 53: 250-264
  • 22 Pleus S, Tytko A, Landgraf R. et al. Definition, Klassifikation, Diagnostik und Differenzialdiagnostik des Diabetes mellitus: Update 2023. Diabetologie und Stoffwechsel 2023; 18: S100-S113
  • 23 McDonald TJ, Perry MH. Detection of C-Peptide in Urine as a Measure of Ongoing Beta Cell Function. Methods Mol Biol 2016; 1433: 93-102
  • 24 Bowman P, McDonald TJ, Shields BM. et al. Validation of a single-sample urinary C-peptide creatinine ratio as a reproducible alternative to serum C-peptide in patients with Type 2 diabetes. Diabetic medicine : a journal of the British Diabetic Association 2012; 29: 90-93
  • 25 McDonald TJ, Knight BA, Shields BM. et al. Stability and reproducibility of a single-sample urinary C-peptide/creatinine ratio and its correlation with 24-h urinary C-peptide. Clinical chemistry 2009; 55: 2035-2039
  • 26 Besser RE, Ludvigsson J, Jones AG. et al. Urine C-peptide creatinine ratio is a noninvasive alternative to the mixed-meal tolerance test in children and adults with type 1 diabetes. Diabetes Care 2011; 34: 607-609
  • 27 Besser RE, Shields BM, Hammersley SE. et al. Home urine C-peptide creatinine ratio (UCPCR) testing can identify type 2 and MODY in pediatric diabetes. Pediatric diabetes 2013; 14: 181-188
  • 28 Bingley PJ, Wherrett DK, Shultz A. et al. Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care 2018; 41: 653-661
  • 29 Greenbaum CJ, Speake C, Krischer J. et al. Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience. Diabetes 2018; 67: 1216-1225
  • 30 Evans-Molina C, Sims EK, DiMeglio LA. et al. β Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight 2018; 3
  • 31 Ferrannini E, Mari A, Monaco GSF. et al. The effect of age on longitudinal measures of beta cell function and insulin sensitivity during the progression of early stage type 1 diabetes. Diabetologia 2023; 66: 508-519
  • 32 Galderisi A, Moran A, Evans-Molina C. et al. Early Impairment of Insulin Sensitivity, β-Cell Responsiveness, and Insulin Clearance in Youth with Stage 1 Type 1 Diabetes. The Journal of clinical endocrinology and metabolism 2021; 106: 2660-2669
  • 33 Sims EK, Chaudhry Z, Watkins R. et al. Elevations in the Fasting Serum Proinsulin-to-C-Peptide Ratio Precede the Onset of Type 1 Diabetes. Diabetes Care 2016; 39: 1519-1526
  • 34 Triolo TM, Pyle L, Seligova S. et al. Proinsulin:C-peptide ratio trajectories over time in relatives at increased risk of progression to type 1 diabetes. J Transl Autoimmun 2021; 4: 100089
  • 35 Carr ALJ, Inshaw JRJ, Flaxman CS. et al. Circulating C-Peptide Levels in Living Children and Young People and Pancreatic β-Cell Loss in Pancreas Donors Across Type 1 Diabetes Disease Duration. Diabetes 2022; 71: 1591-1596
  • 36 Davis AK, DuBose SN, Haller MJ. et al. Prevalence of detectable C-Peptide according to age at diagnosis and duration of type 1 diabetes. Diabetes Care 2015; 38: 476-481
  • 37 Harsunen M, Haukka J, Harjutsalo V. et al. Residual insulin secretion in individuals with type 1 diabetes in Finland: longitudinal and cross-sectional analyses. The lancet Diabetes & endocrinology 2023; 11: 465-473
  • 38 Weir GC, Butler PC, Bonner-Weir S. The β-cell glucose toxicity hypothesis: Attractive but difficult to prove. Metabolism: clinical and experimental 2021; 124: 154870
  • 39 Keskinen P, Korhonen S, Kupila A. et al. First-phase insulin response in young healthy children at genetic and immunological risk for Type I diabetes. Diabetologia 2002; 45: 1639-1648
  • 40 Koskinen MK, Mikk ML, Laine AP. et al. Longitudinal Pattern of First-Phase Insulin Response Is Associated With Genetic Variants Outside the Class II HLA Region in Children With Multiple Autoantibodies. Diabetes 2020; 69: 12-19
  • 41 Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. The New England journal of medicine 2002; 346: 1685-1691
  • 42 Bingley PJ, Gale EAM. The European Nicotinamide Diabetes Intervention Trial G. Progression to type 1 diabetes in islet cell antibody-positive relatives in the European Nicotinamide Diabetes Intervention Trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia 2006; 49: 881-890
  • 43 Sosenko JM, Palmer JP, Rafkin LE. et al. Trends of earlier and later responses of C-peptide to oral glucose challenges with progression to type 1 diabetes in diabetes prevention trial-type 1 participants. Diabetes Care 2010; 33: 620-625
  • 44 Sosenko JM, Palmer JP, Greenbaum CJ. et al. Patterns of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 2006; 29: 643-649
  • 45 Lam A, Dayan C, Herold KC. A little help from residual β cells has long-lasting clinical benefits. J Clin Invest 2021; 131
  • 46 Besser REJ, Bell KJ, Couper JJ. et al. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatric diabetes 2022; 23: 1175-1187
  • 47 Sims EK, Besser REJ, Dayan C. et al. Screening for Type 1 Diabetes in the General Population: A Status Report and Perspective. Diabetes 2022; 71: 610-623
  • 48 Besser RE, Shields BM, Casas R. et al. Lessons from the mixed-meal tolerance test: use of 90-minute and fasting C-peptide in pediatric diabetes. Diabetes Care 2013; 36: 195-201
  • 49 Besser REJ, Ludvigsson J, Hindmarsh PC. et al. Exploring C-peptide loss in type 1 diabetes using growth curve analysis. PloS one 2018; 13: e0199635
  • 50 Ismail HM, Xu P, Libman IM. et al. The shape of the glucose concentration curve during an oral glucose tolerance test predicts risk for type 1 diabetes. Diabetologia 2018; 61: 84-92
  • 51 Yazidi M, Mahjoubi S, Oueslati I. et al. The remission phase in adolescents and young adults with newly diagnosed type 1 diabetes mellitus: prevalence, predicting factors and glycemic control during follow-up. Arch Endocrinol Metab 2022; 66: 222-228
  • 52 Zhong T, Tang R, Gong S. et al. The remission phase in type 1 diabetes: Changing epidemiology, definitions, and emerging immuno-metabolic mechanisms. Diabetes/metabolism research and reviews 2020; 36: e3207
  • 53 Chetan MR, Charlton MH, Thompson C. et al. The Type 1 diabetes „honeymoon“ period is five times longer in men who exercise: a case-control study. Diabetic medicine : a journal of the British Diabetic Association 2019; 36: 127-128
  • 54 Muhammad BJ, Swift PG, Raymond NT. et al. Partial remission phase of diabetes in children younger than age 10 years. Arch Dis Child 1999; 80: 367-369
  • 55 Abdul-Rasoul M, Habib H, Al-Khouly M. “The honeymoon phase” in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatric diabetes 2006; 7: 101-107
  • 56 Aly H, Gottlieb P. The honeymoon phase: intersection of metabolism and immunology. Curr Opin Endocrinol Diabetes Obes 2009; 16: 286-292
  • 57 Meier JJ, Bhushan A, Butler AE. et al. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration?. Diabetologia 2005; 48: 2221-2228
  • 58 Büyükgebiz A, Cemeroglu AP, Böber E. et al. Factors influencing remission phase in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2001; 14: 1585-1596
  • 59 Couper JJ, Haller MJ, Greenbaum CJ. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Stages of type 1 diabetes in children and adolescents. Pediatric diabetes 2018; 19: 20-27
  • 60 Mortensen HB, Hougaard P, Swift P. et al. New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 2009; 32: 1384-1390
  • 61 Max Andersen ML, Hougaard P, Pörksen S. et al. Partial remission definition: validation based on the insulin dose-adjusted HbA1c (IDAA1C) in 129 Danish children with new-onset type 1 diabetes. Pediatric diabetes 2014; 15: 469-476
  • 62 Nagl K, Hermann JM, Plamper M. et al. Factors contributing to partial remission in type 1 diabetes: analysis based on the insulin dose-adjusted HbA1c in 3657 children and adolescents from Germany and Austria. Pediatric diabetes 2017; 18: 428-434
  • 63 Greenbaum CJ, Mandrup-Poulsen T, McGee PF. et al. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 2008; 31: 1966-1971
  • 64 Wentworth JM, Bediaga NG, Giles LC. et al. Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables. Diabetologia 2019; 62: 33-40
  • 65 Wentworth JM, Bediaga NG, Gitelman SE. et al. Clinical trial data validate the C-peptide estimate model in type 1 diabetes. Diabetologia 2020; 63: 885-886
  • 66 Buchanan K, Mehdi AM, Hughes I. et al. An improved clinical model to predict stimulated C-peptide in children with recent-onset type 1 diabetes. Pediatric diabetes 2019; 20: 166-171
  • 67 Herold KC, Gitelman SE, Gottlieb PA. et al. Teplizumab: A Disease-Modifying Therapy for Type 1 Diabetes That Preserves β-Cell Function. Diabetes Care 2023; 46: 1848-1856
  • 68 Orban T, Bundy B, Becker DJ. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet (London, England) 2011; 378: 412-419
  • 69 Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. The New England journal of medicine 2009; 361: 2143-2152
  • 70 Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. The New England journal of medicine 1986; 314: 1360-1368
  • 71 Oram RA, Sims EK, Evans-Molina C. Beta cells in type 1 diabetes: mass and function; sleeping or dead?. Diabetologia 2019; 62: 567-577
  • 72 Leslie RD, Vartak T. C-peptide persistence in type 1 diabetes: „not drowning, but waving“?. BMC Med 2019; 17: 179
  • 73 Pietropaolo M. Persistent C-peptide: what does it mean?. Curr Opin Endocrinol Diabetes Obes 2013; 20: 279-284
  • 74 Oram RA, McDonald TJ, Shields BM. et al. Most people with long-duration type 1 diabetes in a large population-based study are insulin microsecretors. Diabetes Care 2015; 38: 323-328
  • 75 Keenan HA, Sun JK, Levine J. et al. Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 2010; 59: 2846-2853
  • 76 Diabetes Control and Complications Trial (DCCT): Results of Feasibility Study. The DCCT Research Group. Diabetes Care 1987; 10: 1-19
  • 77 Lachin JM, McGee P, Palmer JP. Impact of C-peptide preservation on metabolic and clinical outcomes in the Diabetes Control and Complications Trial. Diabetes 2014; 63: 739-748
  • 78 Wang L, Lovejoy NF, Faustman DL. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care 2012; 35: 465-470
  • 79 McKeigue PM, Spiliopoulou A, McGurnaghan S. et al. Persistent C-peptide secretion in Type 1 diabetes and its relationship to the genetic architecture of diabetes. BMC Med 2019; 17: 165
  • 80 Shields BM, McDonald TJ, Oram R. et al. C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent Stable Phase. Diabetes Care 2018; 41: 1486-1492
  • 81 Greenbaum CJ, Anderson AM, Dolan LM. et al. Preservation of beta-cell function in autoantibody-positive youth with diabetes. Diabetes Care 2009; 32: 1839-1844
  • 82 Gubitosi-Klug RA, Braffett BH, Hitt S. et al. Residual β cell function in long-term type 1 diabetes associates with reduced incidence of hypoglycemia. J Clin Invest 2021; 131
  • 83 Steffes MW, Sibley S, Jackson M. et al. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 2003; 26: 832-836
  • 84 Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocrine reviews 2019; 40: 631-668
  • 85 Brooks AM, Oram R, Home P. et al. Demonstration of an intrinsic relationship between endogenous C-peptide concentration and determinants of glycemic control in type 1 diabetes following islet transplantation. Diabetes Care 2015; 38: 105-112
  • 86 Vantyghem MC, Raverdy V, Balavoine AS. et al. Continuous glucose monitoring after islet transplantation in type 1 diabetes: an excellent graft function (β-score greater than 7) Is required to abrogate hyperglycemia, whereas a minimal function is necessary to suppress severe hypoglycemia (β-score greater than 3). The Journal of clinical endocrinology and metabolism 2012; 97: E2078-2083
  • 87 Buckingham B, Cheng P, Beck RW. et al. CGM-measured glucose values have a strong correlation with C-peptide, HbA1c and IDAAC, but do poorly in predicting C-peptide levels in the two years following onset of diabetes. Diabetologia 2015; 58: 1167-1174
  • 88 Pinckney A, Rigby MR, Keyes-Elstein L. et al. Correlation Among Hypoglycemia, Glycemic Variability, and C-Peptide Preservation After Alefacept Therapy in Patients with Type 1 Diabetes Mellitus: Analysis of Data from the Immune Tolerance Network T1DAL Trial. Clinical therapeutics 2016; 38: 1327-1339
  • 89 Sørensen JS, Johannesen J, Pociot F. et al. Residual β-Cell function 3–6 years after onset of type 1 diabetes reduces risk of severe hypoglycemia in children and adolescents. Diabetes Care 2013; 36: 3454-3459
  • 90 Rickels MR, Evans-Molina C, Bahnson HT. et al. High residual C-peptide likely contributes to glycemic control in type 1 diabetes. J Clin Invest 2020; 130: 1850-1862
  • 91 Marren SM, Hammersley S, McDonald TJ. et al. Persistent C-peptide is associated with reduced hypoglycaemia but not HbA(1c) in adults with longstanding Type 1 diabetes: evidence for lack of intensive treatment in UK clinical practice?. Diabetic medicine : a journal of the British Diabetic Association 2019; 36: 1092-1099
  • 92 Taylor PN, Collins KS, Lam A. et al. C-peptide and metabolic outcomes in trials of disease modifying therapy in new-onset type 1 diabetes: an individual participant meta-analysis. The Lancet Diabetes & Endocrinology 2023; 11: 915-925
  • 93 Wu L, Tsang V, Menzies AM. et al. Risk Factors and Characteristics of Checkpoint Inhibitor–Associated Autoimmune Diabetes Mellitus (CIADM): A Systematic Review and Delineation From Type 1 Diabetes. Diabetes Care 2023; 46: 1292-1299
  • 94 Weber J, Mandala M, Del Vecchio M. et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. The New England journal of medicine 2017; 377: 1824-1835
  • 95 Eggermont AMM, Blank CU, Mandala M. et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. The New England journal of medicine 2018; 378: 1789-1801
  • 96 Barroso-Sousa R, Barry WT, Garrido-Castro AC. et al. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol 2018; 4: 173-182
  • 97 Arndt V. „Cancer survivorship“ in Deutschland – Epidemiologie und Definitionen. Forum 2019; 34: 158-164
  • 98 Kotwal A, Haddox C, Block M. et al. Immune checkpoint inhibitors: an emerging cause of insulin-dependent diabetes. BMJ Open Diabetes Res Care 2019; 7: e000591
  • 99 Wu L, Carlino MS, Brown DA. et al. Checkpoint Inhibitor-Associated Autoimmune Diabetes Mellitus Is Characterized by C-peptide Loss and Pancreatic Atrophy. The Journal of clinical endocrinology and metabolism 2024; 109: 1301-1307
  • 100 Pathak V, Pathak NM, O’Neill CL. et al. Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives. Clin Med Insights Endocrinol Diabetes 2019; 12: 1179551419844521
  • 101 Friedman JG, Cardona Matos Z, Szmuilowicz ED. et al. Use of Continuous Glucose Monitors to Manage Type 1 Diabetes Mellitus: Progress, Challenges, and Recommendations. Pharmgenomics Pers Med 2023; 16: 263-276
  • 102 Boughton CK, Allen JM, Ware J. et al. Closed-Loop Therapy and Preservation of C-Peptide Secretion in Type 1 Diabetes. The New England journal of medicine 2022; 387: 882-893
  • 103 McVean J, Forlenza GP, Beck RW. et al. Effect of Tight Glycemic Control on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial. Jama 2023; 329: 980-989
  • 104 Couri CEB, Malmegrim KCR, Oliveira MC. New Horizons in the Treatment of Type 1 Diabetes: More Intense Immunosuppression and Beta Cell Replacement. Front Immunol 2018; 9: 1086
  • 105 Felton JL, Griffin KJ, Oram RA. et al. Disease-modifying therapies and features linked to treatment response in type 1 diabetes prevention: a systematic review. Communications Medicine 2023; 3: 130
  • 106 Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A. et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets – results of one year follow-up. Clin Immunol 2014; 153: 23-30
  • 107 Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A. et al. Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 2012; 35: 1817-1820
  • 108 Marek-Trzonkowska N, Myśliwiec M, Iwaszkiewicz-Grześ D. et al. Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. Journal of translational medicine 2016; 14: 332
  • 109 Xu G, Chen J, Jing G. et al. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes 2012; 61: 848-856
  • 110 Ovalle F, Grimes T, Xu G. et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nature medicine 2018; 24: 1108-1112
  • 111 Forlenza GP, McVean J, Beck RW. et al. Effect of Verapamil on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial. Jama 2023; 329: 990-999