Subscribe to RSS
DOI: 10.1055/a-2384-6441
Activating Methanol for Chemoselective Transfer Hydrogenation of Chalcones Using an SNS-Ruthenium Complex
The work was financially supported by SERB (CRG/2021/000402).
Abstract
Methanol is gaining popularity as a transfer-hydrogenating agent in catalytic reduction reactions because of its bulk-scale production and inexpensive nature. Current research interests include the utilization of methanol as a safe and sustainable hydrogen source for chemical synthesis and drug development. In particular, the chemoselective reduction of α,β-unsaturated ketones is of great interest because of their prevalence in many natural products. We investigated the potential application of acridine-derived SNS-Ru pincer complexes in methanol activation for chemoselective reduction of chalcones. Our developed catalytic system showed broad substrate tolerance, including substrates containing reducible functional groups. Control experiments and postsynthetic applications are also highlighted.
Key words
ligands - ruthenium catalysis - methanol activation - chalcones - reduction - chemoselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2384-6441.
- Supporting Information
Publication History
Received: 27 June 2024
Accepted after revision: 12 August 2024
Accepted Manuscript online:
12 August 2024
Article published online:
09 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Johnstone RA. W, Wilby AH, Entwistle ID. Chem. Rev. 1985; 85: 129
- 2 Magano J, Dunetz JR. Org. Process Res. Dev. 2012; 16: 1156
- 3 Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
- 4 Filonenko GA, van Puten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
- 5 Prasanna R, Guha S, Sekar G. Org. Lett. 2019; 21: 2650
- 6 Sau A, Mahapatra D, Dey S, Panja D, Saha S, Kundu S. Org. Chem. Front. 2023; 10: 2274
- 7 Taschner MJ, Shahirpour A. J. Am. Chem. Soc. 1985; 107: 5570
- 8 Hudlicky T, Sinai-Zingde G, Natchus MG. Tetrahedron Lett. 1987; 28: 5287
- 9 Davies SG, Rodríguez-Solla H, Tamayo JA, Garner AC, Smith AD. Chem. Commun. 2004; 2502
- 10 Gu Y, Norton JR, Salahi F, Lisnyak VG, Zhou Z, Snyder SA. J. Am. Chem. Soc. 2021; 143: 9657
- 11 Kisets I, Zabelinskaya S, Gelman D. Organometallics 2022; 41: 76
- 12 Li W, Wang Y, Chen P, Zeng M, Jiang M, Jin Z. Catal. Sci. Technol. 2016; 6: 7386
- 13 Bhor MD, Panda MD, Jagtap MD, Bhanage BM. Catal. Lett. 2008; 124: 157
- 14 Shabade AB, Sharma DM, Bajpai P, Gonnade RG, Vanka K, Punji B. Chem. Sci. 2022; 13: 13764
- 15 Sivakumar G, Kumar R, Yadav V, Gupta V, Balaraman E. ACS Catal. 2023; 13: 15013
- 16 Ganguli K, Mandal A, Kundu S. ACS Catal. 2022; 12: 12444
- 17 Shinoda S, Itagaki H, Saito Y. J. Chem. Soc., Chem. Commun. 1985; 860
- 18 Aboo AH, Begum R, Zhao L, Faaroqi ZH, Xiao J. Chin. J. Catal. 2019; 40: 1795
- 19 Garg N, Somasundharam HP, Dahiya P, Sundararaju B. Chem. Commun. 2022; 58: 9930
- 20 Patil RD, Pratihar S. J. Org. Chem. 2024; 89: 1361
- 21 Biswas N, Srimani D. J. Org. Chem. 2021; 86: 9733
- 22 Biswas N, Srimani D. J. Org. Chem. 2021; 86: 10544
- 23 Biswas N, Sharma R, Sardar B, Srimani D. Synlett 2023; 34: 622
- 24 Sardar B, Biswas N, Srimani D. Organometallics 2023; 42: 55
- 25 Sardar B, Pal D, Sarmah R, Srimani D. Chem. Comm. 2023; 59: 9267
- 26 Lauria A, Delisi R, Mingoia F, Terenzi A, Martorana A, Barone G, Almerico AM. Eur. J. Org. Chem. 2014; 3289
- 27 Moses EJ, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
- 28 Mondal A, Pal D, Phukan HJ, Roy M, Kumar S, Purakayastha Purakayastha, Guha AK, Srimani D. ChemSusChem. 2024; 17: e202301138
- 29 Ye X, Plessow PN, Brinks MK, Schelwies M, Schaub T, Rominger F, Paciello R, Limbach M, Hofmann P. J. Am. Chem. Soc. 2024; 136: 5929
- 30 Transfer Hydrogenation of α,β-Unsaturated Carbonyl Compounds; General Procedure A 30 mL oven-dried pressure tube containing a magnetic stirrer bar was charged with the appropriate chalcone (0.5 mmol), KOH (0.5 mmol), and catalyst Ru-1 (2 mol %). MeOH (0.2 mL) and toluene (2 mL) were then added and the tube was sealed under argon and placed in a preheated oil bath at 120 °C for 12 h. On completion of the reaction, the tube was cooled to r.t. and the crude mixture was filtered through a small plug of Celite. The solvent was evaporated and the product was purified by column chromatography (silica gel, EtOAc–hexane). 1,3-Bis(4-methoxyphenyl)propan-1-one (5a) Purified by column chromatography [silica gel (100–200 mesh), EtOAc–hexane (15:85)] to give a white solid; yield: 108 mg (80%). 1H NMR (400 MHz, CDCl3): δ = 7.86 (d, J = 9.0 Hz, 2 H), 7.09 (d, J = 8.8 Hz, 2 H), 6.85 (d, J = 8.9 Hz, 2 H), 6.76 (d, J = 8.6 Hz, 2 H), 3.79 (s, 3 H), 3.71 (s, 3 H), 3.14 (t, J = 7.7 Hz, 2 H), 2.92 (t, J = 8.0 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 198.2, 163.6, 158.2, 133.7, 130.5, 130.2, 129.6, 114.1, 113.9, 55.7, 55.5, 40.6, 29.7.