Subscribe to RSS
DOI: 10.1055/a-2384-6583
Skeletal Reorganization: Approaches towards the Synthesis of Aza-Heterocyclic Cores
We acknowledge the financial support from the University of Calcutta. R.D.M. thanks the Council of Scientific and Industrial Research (CSIR), India for Senior Research Fellowship (file no.:09/028(1056)/2018-EMR-I).
Dedicated to Prof. Brindaban C. Ranu on the occasion of his 75th birth anniversary
Abstract
The impetuous development of the pharmaceutical industry and material science stimulates the search for new synthetic approaches and new methods for the synthesis and functionalization of aza-heterocycles; these are some of the key objectives of modern organic chemistry. As a result, an advanced method towards the synthesis of functionalized N-heterocycles that circumvents the limitations associated with traditional methods needs to be devised. In recent decades, rearrangement/reorganization reactions have emerged as a powerful tool for the efficient synthesis of the aza-heterocycle. In this illustration, we summarize some our recent efforts in the development of few complex aza-heterocyclic cores.
1 Introduction
2 Skeletal Rearrangement of Small Heterocycles via Domino Ring-Opening and Ring-Closing (DROC) Strategy
3 Ru(II)-Catalyzed Skeletal Rearrangement of the Quinazoline Ring
4 Lewis Acid Catalyzed Skeletal Rearrangement of Furans to Indolizine Cores
5 Skeletal Rearrangement of Donor–Acceptor Cyclopropanes via Domino Ring-Opening and Ring-Closing (DROC) Strategy
6 Lewis Acid Mediated Skeletal Rearrangement of Donor–Acceptor Spirocyclopropylpyrazolones
7 Skeletal Rearrangement through Ring Distortion Strategy
8 Conclusion
Key words
reorganization approach - Brønsted acid - Lewis acid - 1H-azidirine - 2-pyridone - indolizine nucleusPublication History
Received: 29 June 2024
Accepted after revision: 12 August 2024
Accepted Manuscript online:
12 August 2024
Article published online:
12 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 1c Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
- 2a Michael J. P. Nat. Prod. Rep. 2007; 24: 191
- 2b Rajarathinam B. Kumaravel K. Vasuki G ACS Comb. Sci.; 2017, 19: 455
- 2c Sahu JK, Ganguly S, Kaushik A. J. Adv. Pharm. Technol. Res. 2014; 5: 90
- 2d De A, Sarkar S, Majee A. Chem. Heterocycl. Compd. 2021; 57: 410
- 2e Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P. Pharmaceuticals 2023; 16: 299
- 3a Zhang Z, Xie C, Tan X, Song G, Wen L, Gao H, Ma C. Org. Chem. Front. 2015; 8: 942
- 3b Vinogradov MG, Turova OV, Zlotin SG. Org. Biomol. Chem. 2019; 17: 3670
- 3c Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
- 4a Ciamician GL, Dennstedt M. Ber. Dtsch. Chem. Ges. 1881; 14: 1153
- 4b Skell PS, Sandler RS. J. Am. Chem. Soc. 1958; 80: 2024
- 4c Vogel E. Angew. Chem. 1960; 72: 4
- 4d Lamb JS, Koyama F, Suzuki N, Suzuki Y. Org. Chem. Front. 2024; 11: 277
- 4e Wentrup C, Mirzaei MS, Kvaskoff D, Taherpour AA. J. Org. Chem. 2021; 86: 8286
- 4f Finkelstein P, Reisenbauer JC, Botlik BB, Green O, Florin A, Morandi B. Chem. Sci. 2023; 14: 2954
- 5 Tietze LF. Chem. Rev. 1996; 96: 115
- 6 Li Q, Mitscher LA, Shen LL. Med. Res. Rev. 2000; 20: 231
- 7 Cox RJ, Ohagan D. J. Chem. Soc., Perkin Trans. 1 1991; 2537
- 8a Nagarajan M, Xiao XS, Antony S, Kohlhagen G, Pommier Y, Cushman M. J. Med. Chem. 2003; 46: 5712
- 8b Hasvold LA, Wang WB, Gwaltney SL, Rockway TW, Nelson LT. J, Mantei RA, Fakhoury SA, Sullivan GM, Li Q, Lin NH, Wang L, Zhang HY, Cohen J, Gu WJ, Marsh K, Bauch J, Rosenberg S, Sham FL. Bioorg. Med. Chem. Lett. 2003; 13: 4001
- 9a Dolle V, Fan E, Nguyen CH, Aubertin AM, Kirn A, Andreola ML, Jamieson G, Tarragolitvak L, Bisagni E. Eur. J. Med. Chem. 1995; 38: 4679
- 9b Wai JS, Williams TM, Bamberger DL, Fisher TE, Hoffman JM, Hudcosky RJ, Mactough SC, Rooney CS, Saari WS, Thomas CM, Goldman ME, Obrien JA, Emini EA, Nunberg JH, Quintero JC, Schleif WA, Anderson PS. J. Med. Chem. 1993; 36: 249
- 10 Bhattacharyya P, Pradhan K, Paul S, Das AR. Tetrahedron Lett. 2012; 53: 4687
- 11a Nagaoka K. Matsumoto M. Oono J., Yokoi K., Ishizeki S., Nakashima T J. Antibiot.; 1986, 39: 1527
- 11b Reusser F. Biochemistry 1977; 16: 3406
- 11c Masuda K, Suzuki A, Nakamura T, Takagaki S, Noda K, Shimomura K, Noguchi H, Shibayama F. Jpn. J. Pharmacol. 1989; 51: 219
- 11d Witty TR, Remers WA. J. Med. Chem. 1973; 16: 1280
- 11e Shimomura K, Manda T, Mukumoto S, Masuda K, Nakamura T, Mizota T, Matsumoto S, Nishigaki F, Oku T, Mori J, Shibayama F. Cancer Res. 1988; 48: 1166
- 11f Ismail FM. D, Levitsky DO, Dembitsky VM. Eur. J. Med. Chem. 2009; 44: 3373
- 12a Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
- 12b Hu XE. Tetrahedron 2004; 60: 2701
- 12c McCoull W, Davis FA. Synthesis 2000; 1347
- 12d Schneider C. Angew. Chem. Int. Ed. 2009; 48: 2082
- 12e Singh GS, D’hooghe M, de Kimpe N. Chem. Rev. 2007; 107: 2080
- 13a Wang Q, Zhang Z, Zhang X, Zhang J, Kang Y, Peng J. RSC Adv. 2015; 5: 4788
- 13b Hickey DM. B, MacKenzie AR, Moody CJ, Rees CW. J. Chem. Soc., Perkin Trans. 1 1987; 921
- 13c Buggle K, Fallon B. J. Chem. Res., Synop. 1988; 349
- 13d Mukherjee P, Das AR. RSC Adv. 2016; 6: 132
- 13e D’Auria M, Racioppi R, Viggiani L, Zanirato P. Eur. J. Org. Chem. 2009; 932
- 13f Do H, Kang CW, Cho JH, Gilbertson SR. Org. Lett. 2015; 17: 3972
- 13g Brimacombe JS, Rahman KM. M. J. Chem. Soc., Perkin Trans. 1 1985; 1073
- 13h Karban J, Sýkora J, Kroutil J, Císařová I, Padělková Z, Buděšínský M. J. Org. Chem. 2010; 75: 3443
- 13i Grouiller A, Nonga B, Navarro M.-L, Molière P, Pacheco H. J. Carbohydr. Chem. 1988; 7: 507
- 13j Badalassi F, Crotti P, Favero L, Macchia F, Pineschi M. Tetrahedron 1997; 53: 14369
- 13k Suto MJ, Stier MA, Werbel LM, Arundel-Suto CM, Leopold WR, Elliott WE, Sebolt-Leopold JS. J. Med. Chem. 1991; 34: 2484
- 14 Mukherjee P, Das AR. J. Org. Chem. 2016; 81: 5513
- 15 Faisal M, Saeed A. Front. Chem. 2021; 8: 2296
- 16a Ghorab MM, Ismail Z, Radwan AA, Abdalla M. Acta Pharm. 2013; 63: 1
- 16b Devi KA, Sriram MS. Int. J. Drug Dev. Res. 2012; 4: 324
- 16c Abida Abida, Parvez N, Rana A, Imran M. Int. J. Pharm. Biol. Arch. 2011; 2: 1651
- 17 Asif M. Int. J. Med. Chem. 2014; 395637
- 18 Lüth A, Löwe W. Eur. J. Med. Chem. 2008; 43: 1478
- 19 Mandal RD, Saha M, Das D, Das AR. J. Org. Chem. 2023; 88: 6071
- 20a Kirsch SF. Org. Biomol Chem. 2006; 4: 2076
- 20b Brown RC. Angew. Chem. Int. Ed. 2005; 44: 850
- 20c Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN. Tetrahedron 1998; 54: 1955
- 21a Lipshutz BH. Chem. Rev. 1986; 86: 795
- 21b Piancatelli G, D’Auria M, D’Onofrio F. Synthesis 1994; 867
- 21c Kappe CO, Murphree SS, Padwa A. Tetrahedron 1997; 53: 14179
- 21d Ciufolini MA, Hermann CY, Dong Q, Shimizu T, Swaminathan S, Xi N. Synlett 1998; 105
- 22 Das D, Das A, Islam S, Das AR, Banerjee A, Majumder R, Bandyopadhyay D. Org. Lett. 2023; 25: 4493
- 23 Mel’nikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293
- 24 Doyle MP, Van Leusen D. J. Org. Chem. 1982; 47: 5326
- 25a Nambu H, Fukumoto M, Hirota W, Yakura T. Org. Lett. 2014; 16: 4012
- 25b Revuelta J, Cicchi S, Brandi A. J. Org. Chem. 2005; 70: 5636
- 25c Zorn C, Goti A, Brandi A, Johnsen K, Kozhushkov SI, de Meijere A, Goti A. Chem. Commun. 1998; 903
- 25d Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 25e Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 25f Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 25g Goldberg AF. G, O’Connor NR, Craig RA. II, Stoltz BM. Org. Lett. 2012; 14: 5314
- 26a Devi S, Nayak A, Mittra AS. J. Indian Chem. Soc. 1984; 61: 640
- 26b Maruoka H, Kashige N, Eishima T, Okabe F, Tanaka R, Fujioka T, Miake F, Yamagata K. J. Heterocycl. Chem. 2008; 45: 1883
- 27 Itokawa M, Miyata T, Arai M. EP2189537A1 2010
- 28 Mukherjee P, Das AR. J. Org. Chem. 2017; 82: 2794
- 29 Mandal RD, Saha M, Das AR. Org. Biomol. Chem. 2022; 20: 2939