Synlett
DOI: 10.1055/a-2384-6807
letter

Nickel-Catalyzed O-Methylation of Cinnamic Acid Using DMSO as Methyl Surrogate

Hrishikesh Talukdar
,
Financial support from the University Grants Commission (UGC), India (Grant No. F.19-255/2021(BSR) and the Department of Science and Technology (DST), Ministry of Science and Technology, India under the PURSE Programme (Grant No. SR/PURSE/2022/116) is gratefully acknowledged.


Abstract

A new method for the O-methylation of cinnamic acid employing DMSO as the methylating agent has been devised, employing a Ni-DMAP complex as catalyst along with Ag2O and dimethylamine as additives. This protocol demonstrates broad substrate compatibility and good tolerance towards various functional groups. The key advantages of this approach include the utilization of cost-effective catalysts, moderate to high yield of the products, and short reaction time.

Supporting Information



Publication History

Received: 10 July 2024

Accepted after revision: 12 August 2024

Accepted Manuscript online:
12 August 2024

Article published online:
16 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Baltas P, Bedos-Belval M. Curr. Med. Chem. 2011; 18: 1672
  • 2 Ruwizhi N, Aderibigbe B. Int. J. Mol. Sci. 2020; 21: 5712
    • 3a Wang Y, Zhang D, Zhang J, Chen N, Zhi G. Food Chem. 2016; 190: 629
    • 3b Karboune S, Safari M, Lue B, Yeboah F, Kermasha S. J. Biotechnol. 2005; 119: 281
    • 3c Bhatia S, Wellington G, Cocchiara J, Lalko J, Letizia C, Api A. Food Chem. Toxicol. 2007; 45: S90
    • 3d Silva AT, Bento CM, Pena AC, Figueiredo LM, Prudencio C, Aguiar L, Silva T, Ferraz R, Gomes MS, Teixeira C, Gomes P. Molecules 2020; 25: 66
    • 3e Taofiq O, González-Paramás AM, Barreiro MF, Ferreira IC. Molecules 2017; 22: 281
  • 4 Fischer E, Speier A. Ber. Dtsch. Chem. Ges. 1895; 28: 3252
  • 5 Zhu Y, Yan H, Lu L, Liu D, Rong G, Mao J. J. Org. Chem. 2013; 78: 9898
  • 6 Xia Q, Liu X, Zhang Y, Chen C, Chen W. Org. Lett. 2013; 15: 3326
    • 7a Omura K, Swern D. Tetrahedron 1978; 34: 1651
    • 7b Guo T, Gao Y, Li Z, Liu J, Guo K. Synlett 2019; 30: 329
    • 7c Pfitzner-Moffatt Oxidation. In Comprehensive Organic Name Reactions and Reagents, Chap. 495. Wang Z. Wiley; Hoboken: 2010
    • 7d Pfitzner K, Moffatt JG. J. Am. Chem. Soc. 1963; 85: 3027
    • 7e Khan I, Saxena A. Tetrahedron 2012; 68: 294
    • 7f Kornblum N, Jones W, Anderson G. J. Am. Chem. Soc. 1959; 81: 4113
    • 7g Kornblum Oxidation. In Comprehensive Organic Name Reactions and Reagents, Chap. 373. Wang Z. Wiley; Hoboken: 2010
    • 8a Xu R, Wan J, Mao H, Pan Y. J. Am. Chem. Soc. 2010; 132: 15531
    • 8b Ashikari Y, Shimizu A, Nokami T, Yoshida J. J. Am. Chem. Soc. 2013; 135: 16070
    • 8c Song S, Huang X, Liang Y, Tang C, Li X, Jiao N. Green Chem. 2015; 17: 2727
  • 9 Tomita R, Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
    • 10a Yuan G, Zheng J, Gao X, Li X, Huang L, Chen H, Jiang H. Chem. Commun. 2012; 48: 7513
    • 10b Ravi C, Reddy N, Pappula V, Samanta S, Adimurthy S. J. Org. Chem. 2016; 81: 9964
  • 11 Zhang Z, Tian Q, Qian J, Liu Q, Liu T, Shi L, Zhang G. J. Org. Chem. 2014; 79: 8182
  • 12 Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725
  • 13 Liu J, Wang X, Guo H, Shi X, Ren X, Huang G. Tetrahedron 2012; 68: 1560
    • 14a Hu G, Xu J, Li P. Org. Lett. 2014; 16: 6036
    • 14b Sharma P, Rohilla S, Jain N. J. Org. Chem. 2015; 80: 4116
  • 15 Pramanik M, Rastogi N. Chem. Commun. 2016; 52: 8557
  • 16 Russell GA, Weiner SA. J. Org. Chem. 1966; 31: 248
    • 17a Yadav P, Yadav S, Awasthi A, Phanindrudu M, Bhowmick S, Tiwari DK. New J. Chem. 2022; 46: 16289
    • 17b Yadav P, Awasthi A, Gokulnath S, Tiwari DK. J. Org. Chem. 2021; 86: 2658
  • 18 Jiang X, Wang C, Wei Y, Xue D, Liu Z, Xiao J. Chem. Eur. J. 2013; 20: 58
  • 19 Guo C, Jia J, Jiang Q, Zhao A, Xu B, Liu Q, Luo W. Synthesis 2015; 48: 421
  • 20 Talukdar H, Gogoi D, Phukan P. Tetrahedron 2023; 132: 133251
  • 21 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian, Inc; Wallingford: 2013
  • 22 Representative Procedure for the O-Methylation of Cinnamic Acid In a Schlenk tube containing 2 mL of DMSO, cinnamic acid (148 mg, 1 mmol), diethylamine (414 mL, 4 mmol), Ag2O (460 mg, 2 mmol), and catalyst (3 mol%) were added with constant stirring. The tube containing the reaction mixture was then kept under heating in an oil bath at 120 °C for 12 h. The reaction mixture was quenched by 30 mL of water and extracted by using ethyl acetate (3 × 20 mL). The combined organic phase was then dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by column chromatography over silica gel using a mixture of ethyl acetate (10%) and petroleum ether (90%) to furnish the pure methyl cinnamate. (E)-Methyl 3-(3-Chloro-4-methoxyphenyl)acrylate White solid; 0.161 g (72%) yield; mp 84–86 °C. 1H NMR (400 MHz, CDCl3): δ = 7.59 (s, 1 H), 7.55 (s, 1 H), 7.39–7.36 (m, 1 H), 6.91 (d, J = 12.0 Hz, 1 H), 6.30 (d, J = 16.0 Hz, 1 H), 3.92 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.3, 156.4, 143.1, 129.3, 128.1, 127.8, 123.8, 123.1, 116.6, 111.9, 56.1, 51.6. HRMS (ESI): m/z calcd for C11H12ClO3 +: 227.0470 [M + H]+; found: 227.047. (E)-Methyl 3-(5-Bromo-2-fluorophenyl)acrylate White solid; 0.174 g (68%) yield, mp 70–72 °C. 1H NMR (400 MHz, CDCl3): δ = 7.72–7.68 (m, 1 H), 7.63–7.62 (m, 1 H), 7.44–7.42 (m, 1 H), 7.00–6.96 (m, 1 H), 6.52–6.49 (m, 1 H), 3.8 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.6, 160.9, 135.7, 134.1 (JCF = 8.8 Hz), 131.3 (JCF = 1.4 Hz), 124.3 (J CF = 8.8 Hz), 121.5 (J CF = 4.3 Hz), 117.9 (J CF = 15.4 Hz), 116.9 (J CF = 2.2 Hz), 51.8. HRMS (ESI): m/z calcd for C10H9BrFO2 +: 258.9765 [M + H]+; found: 258.9757. (E)-Methyl 3-(Benzo[d][1,3]dioxol-5-yl)acrylate White solid; 0.164 g (80%) yield; mp 66–68 °C. 1H NMR (400 MHz, CDCl3): δ = 7.60 (d, J = 12.0 Hz, 1 H), 7.03–6.99 (m, 2 H), 6.81 (d, J = 5.6 Hz, 1 H), 6.26 (d, J = 10.8 Hz, 1 H), 6.00 (s, 2 H), 3.79 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.5, 149.5, 148.3, 144.5, 128.7, 124.4, 115.6, 108.5, 106.4, 101.5, 51.6.