Subscribe to RSS
DOI: 10.1055/a-2388-9487
Acceptorless Dehydrogenation under Neat Reaction Conditions: Synthesis of 2-Aryl/Alkyl Quinazolinones Using Supported Ni NPs as Catalyst
R.D. acknowledges the Science and Engineering Research Board (SRG/2020/002161) for funding. V.M. and H.P. are thankful to the National Institute of Technology (NIT) Calicut for their fellowship. O.P. thanks the National Institute of Technology (NIT) Calicut for the Student Innovative Project (SIP) research grant. The authors are grateful to the Department of Science and Technology, Ministry of Science and Technology, India (DST-FIST) for providing HRMS facility at the Department of Chemistry, National Institute of Technology (NIT) Calicut.
Abstract
We report here a Ni-NPs-catalyzed one-pot synthesis of 2-alkyl/aryl quinazolinone motifs via acceptorless dehydrogenation of alcohol, condensation of an aldehyde intermediate with 2-aminobenzamide, followed by a second dehydrogenation of the cyclized intermediate. The protocol is atom-economical and require earth-abundant Ni as the catalyst. The present report involves the annulation of 2-aminobenzamide with various types of primary alcohols, including aryl/heteroaryl methanol, and aliphatic alcohols, and produces high yields of the desired products under neat conditions. The catalyst was synthesized via a high-temperature pyrolysis strategy, using ZIF-8 as the sacrificial template. The Ni NPs@N-C catalyst was characterized by XPS, HR-TEM, HAADF-STEM, XRD, and ICP-MS. The catalyst is stable even in air at room temperature and displayed excellent activity in the acceptorless dehydrogenative coupling synthesis of quinazolinones and could be recycled five times without appreciable loss of its activity.
Key words
acceptorless dehydrogenation - alkyl/aryl quinazolinone - nitrogen-doped carbon - Ni nanoparticles - solvent-free protocolSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2388-9487.
- Supporting Information
Publication History
Received: 22 June 2024
Accepted after revision: 15 August 2024
Accepted Manuscript online:
15 August 2024
Article published online:
18 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kabir E, Uzzaman M. Results Chem. 2022; 4: 100606
- 1b Jampilek J. Molecules 2019; 24: 3839
- 1c Heravi M, Zadsirjan V. RSC Adv. 2020; 10: 44247
- 2a Joule JA. Adv. Heterocycl. Chem. 2016; 119: 81
- 2b Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda B. Molecules 2020; 28: 1909
- 3a Alsibaee AM, Al-Yousef HM, Al-Salem HS. Molecules 2023; 28: 978
- 3b Rezaeinasab R, Jafari E, Khodarahmi G. J. Res. Med. Sci. 2022; 27: 68
- 3c Alanthadka A, Devi ES, Nagarajan S, Sridharan V, Suvitha A, Maheswari CU. Eur. J. Org. Chem. 2016; 4872
- 3d Shcherbakova I, Balandrin MF, Fox J, Ghatak A, Heaton WL, Conklin RL. Bioorg. Med. Chem. Lett. 2005; 15: 1557
- 3e Kitami Y, Takei H, Nagai Y, Fujita K, Miyama S. Int. J. Pediatr. 2018; 212
- 4 Safakish M, Hajimahdi Z, Aghasadeghi MR, Vahabpour R, Zarghi A. Curr. HIV Res. 2020; 18: 41
- 5 Hassanzadeh F, Jafari E, Hakimelahi GH, Rahmani Khajouei M, Jalali M, Khodarahmi GA. Res. Pharm. Sci. 2012; 7: 87
- 6a Zayed MF, Hassan MH. Saudi Pharm. J. 2014; 22: 157
- 6b Du H, Jiang X, Ma M, Xu H, Liu S, Ma F. Bioorg. Med. Chem. Lett. 2020; 30: 127659
- 7 Rajput R, Mishra AP. Int. J. Pharm. Pharm. Sci. 2012; 4: 66
- 8 Hricovíniová J, Hricovíniová Z, Kozics K. Int. J. Mol. Sci. 2021; 22: 610
- 9 Joshi BK, Gloer JB, Wicklow DT, Dowd PF. J. Nat. Prod. 1999; 62: 650
- 10a Xing Z, Wu W, Miao Y, Tang Y, Zhou Y, Zheng L, Fu Y, Song Z, Peng Y. Org. Chem. Front. 2021; 8: 1867
- 10b Patel DR, Patel KC. Fibers Polym. 2011; 12: 741
- 11a Majumdar B, Sarma D, Jain S, Sarma TK. ACS Omega 2018; 3: 13711
- 11b Dang MH. D, Nguyen TT. M, Nguyen LH. T, Nguyen TT. T, Phan TB, Tran PH, Doan TL. H. New J. Chem. 2020; 44: 14529
- 11c Xie Z, Lan J, Zhu H, Lei G, Jiang G, Le Z. Chin. Chem. Lett. 2021; 3: 1427
- 11d Anandaraj P, Ramesh R, Kamatchi TS. Inorg. Chem. Commun. 2022; 137: 109190
- 11e Watson AJ. A, Maxwell AC, Williams JM. J. Org. Biomol. Chem. 2012; 10: 240
- 11f Wang Q, Lv M, Liu J, Li Y, Xu Q, Zhang X, Cao H. ChemSusChem 2019; 12: 3043
- 11g Hu Y, Chen L, Li B. RSC Adv. 2016; 6: 65196
- 11h Wang Z, Tang Y. Tetrahedron 2016; 72: 1330
- 11i Zhang Z, Wang M, Zhang C, Zhang Z, Lua J, Wang F. Chem. Commun. 2015; 51: 9205
- 11j Wang Y, Meng X, Chena G, Zhao P. Catal. Commun. 2018; 104: 106
- 11k Zhao D, Zhou Y.-R, Shen Q, Li J. -X. RSC Adv. 2014; 4: 6486
- 11l Dutta B, Dutta N, Dutta A, Gogoi M, Mehra S, Kumar A, Deori K, Sarma D. J. Org. Chem. 2023; 88: 14748
- 11m Zhou J, Fang J. J. Org. Chem. 2011; 76: 7730
- 11n Kamata K, Kinoshita N, Koutani M, Aono R, Hayashi E, Hara M. Catal. Sci. Technol. 2022; 12: 6219
- 11o Bie Z, Li G, Lv Y, Niu J, Gao S. Tetrahedron Lett. 2016; 57: 4935
- 11p Vahid AR, Hajishaabanha F, Shaabani S, Farhid H, Shaabani A. J. Iran. Chem. Soc. 2022; 19: 2601
- 11q Ge W, Zhu X, Wei Y. RSC Adv. 2013; 3: 10817
- 11r Oveisi AR, Khorramabadi-zad A, Daliran S. RSC Adv. 2016; 6: 1136
- 12a Lin D.-Z, Lai Y.-L, Huang J.-M. ChemElectroChem 2019; 6: 4188
- 12b Chen T, Yang H, Li S, Xie J, Wei L, Yang L. Tetrahedron Lett. 2023; 131: 154788
- 12c Hu Y, Hou H, Yu L, Zhou S, Wu X, Sun W, Ke F. RSC Adv. 2021; 11: 31650
- 12d Hou H, Ma X, Lin Y, Lin J, Sun W, Wang L, Xu X, Ke F. RSC Adv. 2021; 11: 17721
- 12e Xia Q, Shi Z, Yuan J, Bian Q, Xu Y, Liu YB, Huang Y, Yang X, Xu H. Asian J. Org. Chem. 2019; 8: 1933
- 12f Abinaya R, Rahulan KM, Srinath S, Rahman A, Divya P, Balasubramaniam KK, Sridhard R, Baskar B. Green Chem. 2021; 23: 5990
- 12g Cao L, Huo H, Zeng H, Yu Y, Lu D, Gong Y. Adv. Synth. Catal. 2018; 360: 4764
- 12h Xie Z, Lan J, Zhu H, Lei G, Jiang G, Le Z. Chin. Chem. Lett. 2021; 32: 1427
- 13a Sinha S, Das S, Mondal R, Mandal S, Paul ND. Dalton Trans. 2020; 49: 8448
- 13b Hikawa H, Ino Y, Suzuki H, Yokoyama Y. J. Org. Chem. 2012; 77: 7046
- 13c Hu Y, Li S, Li H, Li Y, Li J, Duanmua C, Li B. Org. Chem. Front. 2019; 6: 2744
- 13d Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandaō P, Paul ND. J. Org. Chem. 2019; 84: 10160
- 13e Hikawa H, Nakayama T, Takahashi M, Kikkawa S, Shoko S, Azumaya I. Adv. Synth. Catal. 2021; 363: 4075
- 13f Song T, Ren P, Ma Z, Xiao J, Yang Y. ACS Sustainable Chem. Eng. 2020; 8: 267
- 13g Mondal R, Chakraborty G, Guin AK, Pal S, Paul ND. Tetrahedron Lett. 2021; 100: 132479
- 14 He L, Li H, Chen J, Wu XF. RSC Adv. 2014; 4: 12065
- 15a Sun K, Shan H, Lu G.-P, Cai C, Beller M. Angew. Chem. Int. Ed. 2021; 133: 25392
- 15b Bera K, Mukherjee A. Tetrahedron Lett. 2021; 81: 153326
- 16a Gunanathan C, Milstein D. Science 2013; 341: 250
- 16b Trincado M, Bösken J, Grützmacher H. Coord. Chem. Rev. 2021; 443: 213967
- 16c Siddiki SM. A. H, Toyao T, Shimizu K. Green Chem. 2018; 20: 2933
- 17a Parua S, Das S, Sikari R, Sinha S, Paul ND. J. Org. Chem. 2017; 82: 7165
- 17b Parua S, Sikari R, Sinha S, Chakraborty G, Mondal R, Paul ND. J. Org. Chem. 2018; 83: 11154
- 18a Pal D, Mondal A, Srimani D. Catal. Sci. Technol. 2022; 12: 3202
- 18b Mondal S, Chakraborty S, Khanra S, Pal S, Brandao P, Paul ND. J. Org. Chem. 2024; 89: 5250
- 19a Samim SA, Roy BC, Nayak S, Kundu S. J. Org. Chem. 2020; 85: 11359
- 19b Kumari S, Maji A, Chauhan R, Chaudhary VK, Kush T, Joshi M, Choudhury AR, Ghosh K. Eur. J. Org. Chem. 2024; e202400051
- 20a Ravindran A, Yadav NE. M, Tamizh MM, Bhuvanesh N, Sarkar S, Karvembu R. Asian J. Org. Chem. 2023; 12: e202200675
- 20b Roy BC, Samim SA, Panja DS, Kundu S. Catal. Sci. Technol. 2019; 9: 6002
- 20c Qiao J, Jiang H, Liu X, Xu C, Sun Z, Chu W. Eur. J. Org. Chem. 2019; 2428
- 21 Li F, Lu L, Liu P. Org. Lett. 2016; 18: 2580
- 22a Balaji S, Balamurugan G, Ramesh R, Semeril D. Organometallics 2021; 40: 725
- 22b Wang K, Chen H, Dai X, Huang X, Feng Z. RSC Adv. 2021; 11: 13119
- 23 Zhong J.-J, To W.-P, Liu Y, Lu W, Che C.-M. Chem. Sci. 2019; 10: 4883
- 24 Wu Z, Zhu Q, Shen C, Tan T. ACS Omega 2016; 1: 498
- 25 Xiang L, Feng H, Liu M, Zhang X, Fan G, Li F. ACS Appl. Nano Mater. 2021; 4: 4688
- 26 Siddiki SM. A. H, Kon K, Touchy AS, Shimizu K. Catal. Sci. Technol. 2014; 4: 1716
- 27 Sardar B, Jamatia R, Samanta A, Srimani D. J. Org. Chem. 2022; 87: 5556
- 28 Su T, Sun K, Lu G, Cai C. ACS Sustainable Chem. Eng. 2022; 10: 3872
- 29a Singh MS, Chowdhury S. RSC Adv. 2012; 2: 4547
- 29b Tanaka K. Solvent-free Organic Synthesis . Wiley-VCH; Weinheim: 2003
- 29c Hernández JG, Eusebio J. J. Org. Chem. 2010; 75: 7107
- 29d Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 1998
- 29e Sheldon RA. Green Chem. 2005; 7: 267
- 30a P. H., M. V.; Tomasini M, Poater A, Dey R. J. Mol. Catal. 2023; 542: 113110
- 30b P. H.; Tomasini, M.; M. V.; Poater A, Dey R. Eur. J. Org. Chem. 2024; 27: e202301213
- 30c M. V.; P. H.; R. P.; Dey R. ChemistrySelect 2023; 8: e202304147
- 30d M. V.; P. H.; Bhobe PA, Dey R. Asian J. Org. Chem. 2024; 13: e202400032
- 30e H. P.; V. M.; Dey R. RSC Adv. 2024; 14: 10761
- 30f P. H.; Tomasini M, Poater A, Dey R. ChemistrySelect 2024; 9: e202400468
- 30g P. H.; Hati S, Dey R. Org. Biomol. Chem. 2023; 21: 6360
- 31a Jiao L, Zhu J, Zhang Y, Yang W, Zhou S, Li A, Xie C, Zheng X, Zhou W, Yu S.-H, Jiang H.-L. J. Am. Chem. Soc. 2021; 143: 19417
- 31b Sun K, Shan H, Neumann H, Lu G.-P, Beller M. Nat. Commun. 2022; 13: 1848
- 31c Zhang C, Fu Z, Zhao Q, Du Z, Zhang R, Li S. Electrochem. Commun. 2020; 116: 106758
- 32a Wang J, Zhao Q, Hou H, Wu Y, Yu W, Ji X, Shao L. RSC Adv. 2017; 7: 14152
- 32b Wang J, Han G, Wang L, Du L, Chen G, Gao Y, Ma Y, Du C, Cheng X, Zuo P, Yin G. Small 2018; 14: 1704282
- 33a Rinaldi-Montes N, Gorria P, Martínez-Blanco D, Amghouz ZA, Fuertes B, Fernández Barquín L, de Pedro I, Olivi L, Blanco JA. J. Mater. Chem. C 2015; 3: 5674
- 33b Zhu J, Wei S, Li Y, Pallavkar S, Lin H, Haldolaarachchige N, Luo Z, Young DP, Guo Z. J. Mater. Chem. 2011; 21: 16239
- 33c Li J, Li P, Li J, Tian Z, Yu F. Catalysts 2019; 9: 506
- 34 Grosvenor AP, Biesinger MC, Smart RSt. C, McIntyre NS. Surf. Sci. 2006; 600: 1771
- 35 Synthesis of Ni Nanoparticles on Nitrogen-Doped Carbon (Ni NPs @N-C) Solution A was prepared by dissolving zinc nitrate hexahydrate (24 mmol) and nickel nitrate hexahydrate as Ni precursor (7.5 mmol) in 120 mL water. Similarly, solution B was prepared by dissolving 2-methyl imidazole (90 mmol) in 60 mL water. Thereafter, solution A was tardily poured into solution B with constant stirring for 10 h at room temperature. Over time the formation of a bright bluish-green precipitate of Ni@ZIF-8 was observed. The Ni@ZIF-8 precipitate was then collected by centrifugation, washed with water (30 mL × 3), and dried at 70 °C for 4 h to obtain a fine pale-bluish green powder. Then the obtained powder of Ni@ZIF-8 was transferred into a quartz tube and heated to 900 °C for 2 h with a heating rate of 5 °C min–1 under an argon atmosphere. After naturally reaching room temperature, the obtained black powder was stirred with 0.5 M sulfuric acid at 80 °C for 10 h and further washed with deionized water thrice (20 mL × 3 each). The obtained solid was dried in the oven at 80 °C and further subjected to heating at 900 °C (with a heating rate of 5 °C min–1) under an argon atmosphere for 2 h to generate the desired catalyst Ni nanoparticles on nitrogen-doped carbon (Ni NPs @N-C). One-Pot Synthesis of 2-Phenyl Quinazolinone via Acceptorless Dehydrogenation Using Ni NPs @N-C Catalyst 2-Aminobenzamide (0.50 mmol), benzyl alcohol (1.5 mmol), Cs2CO3 (0.1 mmol, 20 mol%), and Ni NPs @N-C (10 mg, Ni content: 0. 252 wt%) were charged in an oven-dried reaction vessel, flushed with argon gas and maintained the inert atmosphere using an argon balloon. The reaction was carried out on a preheated heating block (heating block temperature 150 °C) and stirred for 24 h (monitored by TLC). After the completion of the reaction, the reaction mixture was quenched with EtOAc and filtered through a Celite bed, the filtrate was evaporated to dryness using a rotary evaporator to obtain the crude product. The crude product was further purified by column chromatography using an EtOAc–hexane solvent mixture (10:90). The same procedure was followed for all other substrates in Table 2. 2-Phenylquinazolin-4(3H)-one (Table [2], Entry 3a) White solid; yield 92%; Rf = 0.5, hexane/ethyl acetate = 90:10, v/v. 1H NMR (500 MHz, CDCl3): δ = 11.72 (s, 1 H), 8.33 (d, J = 7.8 Hz, 1 H), 8.29 (t, J = 3.55 Hz, 2 H), 7.90–7.77 (m, 2 H), 7.64–7.57 (m, 3 H), 7.51 (t, J = 7.2 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 163.94, 151.76, 149.51, 134.89, 132.80, 131.63, 129.02, 127.99, 127.41, 126.78, 126.34, 120.81. 7-Methyl-2-(thiophen-2-yl)quinazolin-4(3H)-one (Table [2], Entry 3n) Yellow solid; yield 68%; Rf = 0.5, hexane/ethyl acetate = 85:15, v/v. 1H NMR (500 MHz, CDCl3): δ = 11.76 (s, 1 H), 8.21 (d, J = 8.2 Hz, 1 H), 8.15 (dd, J = 4.0, 1.2 Hz, 1 H), 7.61–7.57 (m, 2 H), 7.32–7.29 (m, 1 H), 7.25–7.22 (m, 1 H), 2.52 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 163.45, 149.56, 147.28, 146.08, 137.58, 131.16, 128.36, 128.20, 128.05, 127.43, 126.27, 118.27, 21.96. HRMS (ESI) m/z [M + H+] calcd for C12H9N2OS: 243.0592; found: 243.0587. 2-Hexyl-7-methylquinazolin-4(3H)-one (Table [2], Entry 3o) White solid; yield 80%; Rf = 0.5, hexane/ethyl acetate = 85:15, v/v. 1H NMR (500 MHz, CDCl3): δ = 11.43 (s, 1 H), 8.15 (d, J = 8.1 Hz, 1 H), 7.49 (d, J = 0.6 Hz, 1 H), 7.28 (dd, J = 8.0, 1.4 Hz, 1 H), 2.89–2.71 (m, 2 H), 2.50 (s, 3 H), 1.90–1.80 (m, 2 H), 1.50–1.40 (m, 2 H), 1.37–1.29 (m, 4 H), 0.98–0.82 (m, 3 H). 13C NMR (125 MHz, CDCl3): δ = 163.89, 156.89, 149.52, 145.81, 127.91, 126.93, 126.01, 118.07, 35.96, 31.43, 28.87, 27.48, 22.45, 21.97, 14.03. HRMS (ESI): m/z [M + H+] calcd for C15H20N2O: 245.1654; found: 245.1653.