RSS-Feed abonnieren
DOI: 10.1055/a-2414-2708
Synthesis of Substituted 1-Benzyl-2H-1,2,3-Triazoles by a Click Reaction Using Calcium Carbide as an Acetylene Source
We thank the Gansu Province Science and Technology Project (22JR5RG568), the Doctoral Start Fund of Hexi University (KYQD2020009), the Key Research and Development Program Projects of Gansu Province (18YF1NG086), and the National Natural Science Foundation of China (22261017, 22061017) for financial support.

Abstract
An effective strategy for constructing substituted 1-benzyl-1H-1,2,3-triazoles was developed through click reactions of benzylic halides with sodium azide and calcium carbide as sources of nitrogen and acetylene, respectively. The advantages of this method are an easily handled inexpensive source of acetylene, a wide range of substrates, satisfactory yields, and simple workup procedures, which could promote the use of calcium carbide as a sustainable acetylene source in modern industrial chemistry.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2414-2708.
- Supporting Information
Publikationsverlauf
Eingereicht: 30. Juli 2024
Angenommen nach Revision: 12. September 2024
Accepted Manuscript online:
12. September 2024
Artikel online veröffentlicht:
08. Oktober 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Tang W, Becker ML. Chem. Soc. Rev. 2014; 43: 7013
- 1b Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
- 1c Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Med. Res. Rev. 2008; 28: 278
- 1d Xi W, Scott TF, Kloxin CJ, Bowman CN. Adv. Funct. Mater. 2014; 24: 2572
- 1e Xiong X, Chen H. Youji Huaxue 2013; 33: 1437
- 2 Kolb HC, Sharpless KB. Drug Discovery Today 2003; 8: 1128
- 3 Moorhouse AD, Santos AM, Gunaratnam M, Moore M, Neidle S, Moses JE. J. Am. Chem. Soc. 2006; 128: 15972
- 4 Huang C, Geng X, Zhao P, Zhou Y, Yu X.-X, Wang L.-S, Wu Y.-D, Wu A.-X. J. Org. Chem. 2021; 86: 13664
- 5a Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
- 5b Jain A, Piplani P. Mini-Rev. Med. Chem. 2019; 19: 1298
- 6 Livermore DG. H, Bethell RC, Cammack N, Hancock AP, Hann MM, Green DV. S, Lamont RB, Noble SA, Orr DC, Payne JJ, Ramsay MV. J, Shingler AH, Smith C, Storer R, Williamson C, Willson T. J. Med. Chem. 1993; 36: 3784
- 7 Lednicer D, Mitscher LA. The Organic Chemistry of Drug Synthesis . Wiley Interscience; New York: 1977
- 8 Hennequin LF, Thomas AP, Johnstone C, Stokes ES. E, Plé PA, Lohmann J.-JM, Ogilvie DJ, Dukes M, Wedge SR, Curwen JO, Kendrew J, Lambert-van der Brempt C. J. Med. Chem. 1999; 42: 5369
- 9 Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E, Zhanel GG. Expert Rev. Anti-Infect. Ther. 2007; 5: 365
- 10 Phillips OA, Rotimi VO, Jamal WY, Shahin M, Verghese TL. J. Chemother. (Abingdon U. K.) 2003; 15: 113
- 11 Phillips OA, Udo EE, Ali AA. M, Al-Hassawi N. Bioorg. Med. Chem. 2003; 11: 35
- 12a Alonso F, Moglie Y, Radivoy G, Yus M. J. Org. Chem. 2013; 78: 5031
- 12b Chanda K, Rej S, Huang MH. Chem. Eur. J. 2013; 19: 16036
- 12c Evans WJ, Montalvo E, Champagne TM, Ziller JW, DiPasquale AG, Rheingold AL. J. Am. Chem. Soc. 2008; 130: 16
- 12d Gangaprasad D, Paul Raj J, Kiranmye T, Karthikeyan K, Elangovan J. Eur. J. Org. Chem. 2016; 2016: 5642
- 12e Gao Y, Lam Y. Org. Lett. 2006; 8: 3283
- 12f Ji L, Zhou G.-Q, Qian C, Chen X.-Z. Eur. J. Org. Chem. 2014; 2014: 3622
- 12g Jiang Y, Kuang C. Mini-Rev. Med. Chem. 2013; 13: 713
- 12h Kumar BS, Gadakh S, Sudalai A. Tetrahedron Lett. 2018; 59: 2365
- 12i Li Y.-J, Li X, Zhang S.-X, Zhao Y.-L, Liu Q. Chem. Commun. 2015; 51: 11564
- 12j Lin S, Sharma A. Chem. Heterocycl. Compd. 2018; 54: 314
- 12k Opsomer T, Thomas J, Dehaen W. Synthesis 2017; 49: 4191
- 12l Shu W.-M, Zhang X.-F, Zhang X.-X, Li M, Wang A.-J, Wu A.-X. J. Org. Chem. 2019; 84: 14919
- 12m Tasca E, La Sorella G, Sperni L, Strukul G, Scarso A. Green Chem. 2015; 17: 1414
- 12n Wan J.-P, Hu D, Liu Y, Sheng S. ChemCatChem 2015; 7: 901
- 12o Zarei A, Khazdooz L, Hajipour AR, Aghaei H, Azizi G. Synthesis 2012; 44: 3353
- 12p Díaz Velázquez H, García YR, Vandichel M, Madder A, Verpoort F. Org. Biomol. Chem. 2014; 12: 9350
- 13a Jiang Y, Kuang C, Yang Q. Synlett 2009; 3163
- 13b Yang Q, Jiang Y, Kuang C. Helv. Chim. Acta 2012; 95: 448
- 13c Gonda Z, Lőrincz K, Novák Z. Tetrahedron Lett. 2010; 51: 6275
- 14 Zhou C, Zhang J, Liu P, Xie J, Dai B. RSC Adv. 2015; 5: 6661
- 15 Rodygin KS, Samoylenko DE, Seitkalieva MM, Lotsman KA, Metlyaeva SA, Ananikov VP. Green Chem. 2022; 24: 1132
- 16a Rodygin KS, Werner G, Kucherov FA, Ananikov VP. Chem. Asian J. 2016; 11: 965
- 16b Chen W, Li Z. J. Org. Chem. 2022; 87: 76
- 16c Hosseini A, Schreiner PR. Org. Lett. 2019; 21: 3746
- 16d Ledovskaya MS, Voronin VV. Tetrahedron 2023; 149: 133720
- 16e Liao H, Li Z. Tetrahedron Lett. 2023; 120: 154445
- 16f Liu H, You X, Wen F, Zhang Z, Li Z. Asian J. Org. Chem. 2022; 11: e202200204
- 16g Liu L, Sun G, Zhang J. Adv. Synth. Catal. 2023; 365: 1801
- 16h Liu Z, Wang Z, Liao H, Li Z. Org. Lett. 2023; 25: 5812
- 16i Rodygin KS, Ledovskaya MS, Voronin VV, Lotsman KA, Ananikov VP. Eur. J. Org. Chem. 2021; 2021: 43
- 16j Rodygin KS, Vikenteva YA, Ananikov VP. ChemSusChem 2019; 12: 1483
- 16k Wang Y, Wen F, Li Z. Chem. Asian J. 2022; 17: e202200698
- 16l Wang Z, Zhang Z, Li Z. Org. Lett. 2022; 24: 8067
- 16m Wu J, Ma Y, Wang Y, Wang C, Luo H, Li D, Yang J. Green Chem. 2023; 25: 3425
- 16n Zhang Z, Wang Z, Li Z. Org. Lett. 2022; 24: 5491
- 17a Fu R, Li Z. Eur. J. Org. Chem. 2017; 2017: 6648
- 17b Fu R, Li Z. J. Chem. Res. 2017; 41: 341
- 17c Fu R, Li Z. Org. Lett. 2018; 20: 2342
- 17d Fu R, Lu Y, Yue G, Wu D, Xu L, Song H, Cao C, Yu X, Zong Y. Org. Lett. 2021; 23: 3141
- 17e Fu R, Li Z, Gao L. Huaxue Jinzhan 2019; 31: 1303
- 18a Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
- 18b Yamada YM. A, Sarkar SM, Uozumi Y. J. Am. Chem. Soc. 2012; 134: 9285
- 19 1-(2-Phenoxybenzyl)-1H-1,2,3-triazole (2t); Typical Procedure A mixture of 1-(chloromethyl)-2-phenoxybenzene (0.5 mmol, 0.109 g), 72–82% pure calcium carbide (2.4 mmol, 0.153 g), NaN3 (0.6 mmol, 0.040 g, 1.2 equiv), CuI (0.05 mmol, 0.0095 g, 10 mol%), Et3N (0.5 mmol, 0.5ml), H2O (3 mmol, 54 μL, 6.0 equiv) in DMF (3 mL) was heated with stirring in an oil bath at 80 °C for 10 h until the reaction complete (TLC). The resulting mixture was filtered to remove the solids and the liquor was extracted with EtOAc (3 × 10 mL). The extracts were washed with sat. brine (3 × 10 mL), dried (Na2SO4), and concentrated under reduced pressure. The crude product was crystallized from PE–EtOAc to give a white solid; yield: 80.8 mg (65%); mp 82–85 °C. 1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 1.0 Hz, 1 H), 7.57 (d, J = 1.0 Hz, 1 H), 7.41–7.26 (m, 4 H), 7.18–7.07 (m, 2 H), 7.00–6.92 (m, 2 H), 6.87 (dd, J = 8.2, 1.1 Hz, 1 H), 5.65 (s, 2 H). 13C NMR (101 MHz, CDCl3): δ = 156.5, 154.9, 133.9, 130.6, 130.3, 130.0, 125.8, 123.9, 123.9, 123.7, 118.7, 118.4, 48.8. HRMS (ESI): m/z [M + Na]+ calcd for C15H13N3NaO: 274.0951; found: 274.0953. 1-(2-Bromo-5-methoxybenzyl)-1H-1,2,3-triazole (2ad) White solid: 94.5 mg (71%); mp 74–76 °C (PE–EtOAc). 1H NMR (400 MHz, CDCl3): δ = 7.71 (d, J = 1.1 Hz, 1 H), 7.61 (d, J = 1.0 Hz, 1 H), 7.47 (d, J = 8.8 Hz, 1 H), 6.76 (dd, J = 8.8, 3.0 Hz, 1 H), 6.64 (d, J = 3.0 Hz, 1 H), 5.63 (s, 2 H), 3.71 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 159.4, 135.1, 134.2, 133.8, 123.8, 116.2, 115.7, 113.5, 55.5, 53.7. HRMS (ESI): m/z [2M + Na]+ calcd for C20H20Br2N6NaO2: 558.9887; found: 558.9886.