Subscribe to RSS
DOI: 10.1055/a-2427-7689
Visible-Light Organophotoredox-Catalyzed Phosphonoalkylation of Alkenes via Deaminative Three-Component Radical–Radical Coupling
This work was supported by the Department of Science and Technology (DST), Ministry of Science and Technology, India, the Science and Engineering Research Board (SERB), Core Research Grant No. CRG/2021/006717. S.D. thanks CSIR, India for the fellowship.

On the occasion of 75th birthday of Prof. B. C. Ranu
Abstract
Here, we have reported a visible-light-mediated organic photoredox-catalyzed difunctionalization of vinyl arenes via radical–radical coupling. A stabilized benzylic radical at the α-position is generated via the regioselective addition of phosphonyl radical at the β-position of the styrene. Subsequently, benzyl or allyl radical, generated via the deaminative pathway from the Katritzky salt, combines with the α-radical of the styrene to furnish the functionalised C–P and C–C bonds in a single reaction.
Key words
styrene - difunctionalization - radical-polar crossover - phosphorylation - deaminative - α-alkylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2427-7689.
- Supporting Information
Publication History
Received: 30 August 2024
Accepted after revision: 30 September 2024
Accepted Manuscript online:
30 September 2024
Article published online:
22 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Dorn SK, Brown MK. ACS Catal. 2022; 12: 2058
- 1b Chen X, Xiao F, He W.-M. Org. Chem. Front. 2021; 8: 5206
- 1c Barve BD, Kuo Y.-H, Li W.-T. Chem. Commun. 2021; 57: 12045
- 2a Pan Q, Ping Y, Wang Y, Guo Y, Kong W. J. Am. Chem. Soc. 2021; 143: 10282
- 2b Wickham LM, Dhungana RK, Giri R. ACS Omega 2022; 8: 1060
- 2c Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
- 3a Xu S, Chen H, Zhou Z, Kong W. Angew. Chem. Int. Ed. 2021; 60: 7405
- 3b Campbell MW, Yuan M, Polites VC, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2021; 143: 3901
- 3c Qi X, Diao T. ACS Catal. 2020; 10: 8542
- 3d Badir SO, Molander GA. Chem. 2020; 6: 1327
- 4a Cabrera-Afonso MJ, Sookezian A, Badir SO, Khatib ME, Molander GA. Chem Sci. 2021; 12: 9189
- 4b Tang H.-J, Zhang B, Xue F, Feng C. Org. Lett. 2021; 23: 4040
- 4c Wang S, Cheng B.-Y, Sršen M, König B. J. Am. Chem. Soc. 2020; 142: 7524
- 5 Yip BR. P, Pal KB, Lin JD, Xu Y, Das M, Lee J, Liu X.-W. Chem. Commun. 2021; 57: 10783
- 6a Mathi GR, Jeong Y, Moon Y, Hong S. Angew. Chem. Int. Ed. 2019; 59: 2049
- 6b Ishii T, Ota K, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 14073
- 6c Chen D, Xu L, Long T, Zhu S, Yang J, Chu L. Chem Sci. 2018; 9: 9012
- 7 Krečmerová M, Majer P, Rais R, Slusher BS. Front. Chem. 2022; 10: 889737
- 8 Fu Q, Bo ZY, Ye JH, Ju T, Huang H, Liao LL, Yu DG. Nat. Commun. 2019; 10: 3592
- 9 Bhunia SK, Das P, Jana R. Org. Biomol. Chem. 2018; 16: 9243
- 10 Das S, Rahaman SA, Pradhan K, Jana R. Org. Lett. 2024; 26: 6955
- 11 Nandi S, Das P, Das S, Mondal S, Jana R. Green Chem. 2023; 25: 3633
- 12a Baker KM, Tallon A, Loach RP, Bercher OP, Perry MA, Watson MP. Org. Lett. 2021; 23: 7735
- 12b Wang J, Hoerrner ME, Watson MP, Weix D. J. Angew. Chem. Int. Ed. 2020; 59: 13484
- 12c Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 5697
- 12d Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
- 13 Correia JT. M, Fernandes VA, Matsuo BT, Delgado JA. C, De Souza WC, Weber PaixãoM. Chem. Commun. 2020; 56: 503