Subscribe to RSS
DOI: 10.1055/a-2460-8302
N-Heterocyclic Carbene Switchable Radical- or Benzyne-Meditated Arylation of Thiols Using DMF/KOt-Bu
J.P. thanks the Australian Government for a Research Training Program (RTP) Scholarship and a Destination Australia Program (DAP) scholarship.

Abstract
A mild, metal, and photoredox-free direct arylation of alkyl and aryl thiols with aryl iodides using a DMF/KOt-Bu system has been developed. In the absence of an N-heterocyclic carbene (NHC) additive, the reaction proceeds via a benzyne intermediate and was suitable for the substitution of thiols with phenyl, while the presence of an NHC or phenanthroline derivative improves regioselectivity for the reaction of substituted aryl iodides via a radical pathway. This protocol features inexpensive materials and good substrate scope and could be useful in the arylation of aryl and alkyl thiols.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2460-8302.
- Supporting Information
Publication History
Received: 10 October 2024
Accepted after revision: 04 November 2024
Accepted Manuscript online:
04 November 2024
Article published online:
28 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
- 2 Gangjee A, Zeng Y, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
- 3 Le Grand B, Pignier C, Létienne R, Cuisiat F, Rolland F, Mas A, Vacher B. J. Med. Chem. 2008; 51: 3856
- 4 Feng M, Tang B, Liang HS, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
- 5 Beletskaya IP, Ananikov VP. Chem. Rev. 2022; 122: 16110
- 6 Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
- 7 Migita T, Shimizu T, Asami Y, Shiobara J.-i, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
- 8 Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
- 9 Zheng C, Lu F, Lu H, Xin J, Deng Y, Yang D, Wang S, Huang Z, Gao M, Lei A. Chem. Commun. 2018; 54: 5574
- 10 Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
- 11 Jiang M, Li H, Yang H, Fu H. Angew. Chem. Int. Ed. 2017; 56: 874
- 12 Liang G, Wang J.-H, Lei T, Cheng Y.-Y, Zhou C, Chen Y.-J, Ye C, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2021; 23: 8082
- 13 Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
- 14 Franco M, Vargas EL, Tortosa M, Cid MB. Chem. Commun. 2021; 57: 11653
- 15 Øpstad CL, Melø T.-B, Sliwka H.-R, Partali V. Tetrahedron 2009; 65: 7616
- 16 Pichette Drapeau M, Fabre I, Grimaud L, Ciofini I, Ollevier T, Taillefer M. Angew. Chem. Int. Ed. 2015; 54: 10587
- 17 Bergès J, Zaid Y, Tlili A, Sotiropoulos J.-M, Taillefer M. Eur. J. Org. Chem. 2021; 1559
- 18 Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LE. A, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402
- 19 Puschnig J, Greatrex BW. Eur. J. Org. Chem. 2024; 27: e202400031
- 20 Muzart J. Tetrahedron 2009; 65: 8313
- 21 Zhang M.-Z, Guo Q.-H, Sheng W.-B, Guo C.-C. Adv. Synth. Catal. 2015; 357: 2855
- 22 Shirakawa E, Itoh K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
- 23 Niu Y.-J, Sui G.-H, Zheng H.-X, Shan X.-H, Tie L, Fu J.-L, Qu J.-P, Kang Y.-B. J. Org. Chem. 2019; 84: 10805
- 24 Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem. Sci. 2014; 5: 476
- 25 Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
- 26 Zhou N, Zhao F, Wang L, Gao X, Zhao X, Zhang M. Org. Lett. 2023; 25: 6072
- 27 Zhang Q, Lei H, Zhou C.-Y, Wang C. Org. Lett. 2022; 24: 4615
- 28 Zhou N, Wang L, Zhao F, Gao X, Zhao X, Zhang M. J. Org. Chem. 2023; 88: 16556
- 29 Chen W.-C, Hsu Y.-C, Shih W.-C, Lee C.-Y, Chuang W.-H, Tsai Y.-F, Chen PP.-Y, Ong T.-G. Chem. Commun. 2012; 48: 6702
- 30 Kuehn L, Zapf L, Werner L, Stang M, Würtemberger-Pietsch S, Krummenacher I, Braunschweig H, Lacôte E, Marder TB, Radius U. Chem. Sci. 2022; 13: 8321
- 31 Messelberger J, Grünwald A, Goodner SJ, Zeilinger F, Pinter P, Miehlich ME, Heinemann FW, Hansmann MM, Munz D. Chem. Sci. 2020; 11: 4138
- 32 Wanzlick HW, Schikora E. Angew. Chem. 1960; 72: 494
- 33 Zheng H.-X, Shan X.-H, Qu J.-P, Kang Y.-B. Org. Lett. 2017; 19: 5114
- 34 Bajracharya GB, Daugulis O. Org. Lett. 2008; 10: 4625
- 35 Rondan NG, Domelsmith LN, Houk KN, Bowne AT, Levin RH. Tetrahedron Lett. 1979; 20: 3237
- 36 Murphy JA, Khan TA, Zhou S.-z, Thomson DW, Mahesh M. Angew. Chem. Int. Ed. 2005; 44: 1356
- 37 General Procedure for 3a–n To a solution of iodobenzene (1a, 111 μL, 1 mmol, 1.0 equiv) in DMF (3 mL) was added thiol 2 (1.5 mmol, 1.5 equiv) and KOt-Bu (5 mmol, 5.0 equiv), and the mixture was heated to 60 °C for 16 h. The reaction mixture was diluted with Et2O (15 mL) and H2O (15 mL), the layers were separated, and the aqueous layer was extracted with Et2O (15 mL). The combined organic layers were dried over Na2SO4, and the volatiles were removed under reduced pressure. The crude was purified via flash column chromatography to yield the desired sulfide 3.
- 38 General Procedure for 3f,g,k,o–t To a solution of aryl iodide 1 (1 mmol, 1.0 equiv) in DMF (3 mL) was added thiophenol (2a, 1.5 mmol, 1.5 equiv), NHC 4 (0.25 mmol, 0.25 equiv), and KOt-Bu (5 mmol, 5.0 equiv), and the mixture was heated to 60 °C for 16 h. The reaction mixture was diluted with Et2O (15 mL) and H2O (15 mL), the layers were separated, and the aqueous layer was extracted with Et2O (15 mL). The combined organic layers were dried over Na2SO4, and the volatiles were removed under reduced pressure. The crude was purified via flash column chromatography to yield the desired sulfide 3.