Semin Neurol
DOI: 10.1055/a-2525-3511
Review Article

Seizures Associated with Autoimmune Disorders — Current Treatment Approaches

1   Princess Alexandra Hospital, Woolloongabba Qld, Australia
2   School of Medicine, the University of Queensland, Brisbane, Australia
,
Jeffrey W. Britton
3   Epilepsy Division, Department of Neurology, Mayo Clinic, Rochester, Minnesota
› Institutsangaben

Abstract

Autoimmune-associated seizures and epilepsy are increasingly recognized in clinical practice and can arise in the setting of acute encephalitis but in some cases may present with chronic focal epilepsy. These conditions are usually resistant to antiseizure therapy but may respond definitively to timely immunotherapy. Early diagnosis and treatment are critical to minimize neural injury and optimize outcomes.

Treatment is guided by consensus opinion because definitive trials are currently lacking. The initial management approach usually involves first-line agents such as corticosteroids, intravenous immunoglobulin (IVIg), or plasma exchange, with second-line agents like rituximab or cyclophosphamide. Maintenance therapy is considered to prevent relapses, which occur in up to 35% of patients. Relapse management requires careful differentiation from postencephalitic epilepsy, which in the absence of active inflammation does not respond to immunotherapy.

This review discusses treatment strategies for autoimmune-associated seizure disorders, including acute symptomatic seizures and epilepsy. We discuss expected outcomes on the basis of the underlying pathogenesis including cases mediated by autoantibodies targeting specific neuronal surface/synaptic antigens, and intracellular epitopes, and for cases lacking defined biomarkers. Specific approaches are outlined for disorders such as anti-LGI1, anti-NMDAR, anti-GABA-BR, and anti-GAD65 encephalitides, emphasizing tailored immunotherapy based on pathophysiology and clinical context.

Note

J.W.B.: Inventor agreement—Seer Medical—no royalties received to date.




Publikationsverlauf

Artikel online veröffentlicht:
12. März 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Scheffer IE, Berkovic S, Capovilla G. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017; 58 (04) 512-521
  • 2 de Bruijn MAAM, Bastiaansen AEM, Mojzisova H. et al; ACES Study Group. Antibodies contributing to focal epilepsy signs and symptoms score. Ann Neurol 2021; 89 (04) 698-710
  • 3 McGinty RN, Handel A, Moloney T. et al. Clinical features which predict neuronal surface autoantibodies in new-onset focal epilepsy: implications for immunotherapies. J Neurol Neurosurg Psychiatry 2021; 92 (03) 291-294
  • 4 Steriade C, Britton J, Dale RC. et al. Acute symptomatic seizures secondary to autoimmune encephalitis and autoimmune-associated epilepsy: conceptual definitions. Epilepsia 2020; 61 (07) 1341-1351
  • 5 Geis C, Planagumà J, Carreño M, Graus F, Dalmau J. Autoimmune seizures and epilepsy. J Clin Invest 2019; 129 (03) 926-940
  • 6 Graus F, Vogrig A, Muñiz-Castrillo S. et al. Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 2021; 8 (04) e1014
  • 7 Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 2017; 97 (02) 839-887
  • 8 Hirsch LJ, Gaspard N, van Baalen A. et al. Proposed consensus definitions for new-onset refractory status epilepticus (NORSE), febrile infection-related epilepsy syndrome (FIRES), and related conditions. Epilepsia 2018; 59 (04) 739-744
  • 9 Gaspard N, Foreman BP, Alvarez V. et al; Critical Care EEG Monitoring Research Consortium (CCEMRC). New-onset refractory status epilepticus: etiology, clinical features, and outcome. Neurology 2015; 85 (18) 1604-1613
  • 10 Yanagida A, Kanazawa N, Kaneko J. et al. Clinically based score predicting cryptogenic NORSE at the early stage of status epilepticus. Neurol Neuroimmunol Neuroinflamm 2020; 7 (05) e849
  • 11 Sheikh Z, Hirsch LJ. A practical approach to in-hospital management of new-onset refractory status epilepticus/febrile infection related epilepsy syndrome. Front Neurol 2023; 14: 1150496
  • 12 de Bruijn MAAM, van Sonderen A, van Coevorden-Hameete MH. et al. Evaluation of seizure treatment in anti-LGI1, anti-NMDAR, and anti-GABABR encephalitis. Neurology 2019; 92 (19) e2185-e2196
  • 13 Ilyas-Feldmann M, Prüß H, Holtkamp M. Long-term seizure outcome and antiseizure medication use in autoimmune encephalitis. Seizure 2021; 86: 138-143
  • 14 van Sonderen A, Thijs RD, Coenders EC. et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016; 87 (14) 1449-1456
  • 15 von Rhein B, Wagner J, Widman G, Malter MP, Elger CE, Helmstaedter C. Suspected antibody negative autoimmune limbic encephalitis: outcome of immunotherapy. Acta Neurol Scand 2017; 135 (01) 134-141
  • 16 Dubey D, Britton J, McKeon A. et al. Randomized placebo-controlled trial of intravenous immunoglobulin in autoimmune LGI1/CASPR2 epilepsy. Ann Neurol 2020; 87 (02) 313-323
  • 17 Abboud H, Probasco J, Irani SR. et al; Autoimmune Encephalitis Alliance Clinicians Network. Autoimmune encephalitis: proposed recommendations for symptomatic and long-term management. J Neurol Neurosurg Psychiatry 2021; 92 (08) 897-907
  • 18 Pham HP, Daniel-Johnson JA, Stotler BA, Stephens H, Schwartz J. Therapeutic plasma exchange for the treatment of anti-NMDA receptor encephalitis. J Clin Apher 2011; 26 (06) 320-325
  • 19 Toledano M, Britton JW, McKeon A. et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology 2014; 82 (18) 1578-1586
  • 20 Viaccoz A, Desestret V, Ducray F. et al. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology 2014; 82 (07) 556-563
  • 21 Thaler FS, Zimmermann L, Kammermeier S. et al; German Network for Research on Autoimmune Encephalitis (GENERATE). Rituximab treatment and long-term outcome of patients with autoimmune encephalitis: real-world evidence from the GENERATE registry. Neurol Neuroimmunol Neuroinflamm 2021; 8 (06) e1088
  • 22 Irani SR, Michell AW, Lang B. et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011; 69 (05) 892-900
  • 23 Irani SR, Stagg CJ, Schott JM. et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013; 136 (Pt 10): 3151-3162
  • 24 Ariño H, Armangué T, Petit-Pedrol M. et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016; 87 (08) 759-765
  • 25 Cui LL, Boltze J, Zhang Y. Positive LGI1 antibodies in CSF and relapse relate to worse outcome in anti-LGI1 encephalitis. Front Immunol 2021; 12: 772096
  • 26 Smith KM, Dubey D, Liebo GB, Flanagan EP, Britton JW. Clinical course and features of seizures associated with LGI1-antibody encephalitis. Neurology 2021; 97 (11) e1141-e1149
  • 27 Campetella L, Farina A, Villagrán-García M. et al. Predictors and clinical characteristics of relapses in LGI1-antibody encephalitis. Neurol Neuroimmunol Neuroinflamm 2024; 11 (03) e200228
  • 28 Gabilondo I, Saiz A, Galán L. et al. Analysis of relapses in anti-NMDAR encephalitis. Neurology 2011; 77 (10) 996-999
  • 29 Hirose S, Hara M, Kamei S, Dalmau J, Nakajima H. Characteristics of clinical relapses and patient-oriented long-term outcomes of patients with anti-N-methyl-D-aspartate receptor encephalitis. J Neurol 2022; 269 (05) 2486-2492
  • 30 Titulaer MJ, McCracken L, Gabilondo I. et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013; 12 (02) 157-165
  • 31 Baumgartner T, Pitsch J, Olaciregui-Dague K. et al. Seizure underreporting in LGI1 and CASPR2 antibody encephalitis. Epilepsia 2022; 63 (09) e100-e105
  • 32 Cabezudo-García P, Mena-Vázquez N, Villagrán-García M, Serrano-Castro PJ. Efficacy of antiepileptic drugs in autoimmune epilepsy: a systematic review. Seizure 2018; 59: 72-76
  • 33 Feyissa AM, López Chiriboga AS, Britton JW. Antiepileptic drug therapy in patients with autoimmune epilepsy. Neurol Neuroimmunol Neuroinflamm 2017; 4 (04) e353
  • 34 Basta-Kaim A, Budziszewska B, Lasoń W. [Effects of antiepileptic drugs on immune system]. Przegl Lek 2008; 65 (11) 799-802
  • 35 Huang Q, Ma M, Wei X. et al. Characteristics of seizure and antiepileptic drug utilization in outpatients with autoimmune encephalitis. Front Neurol 2019; 9: 1136
  • 36 Zhong R, Chen Q, Zhang X, Zhang H, Lin W. Relapses of anti-NMDAR, anti-GABABR and anti-LGI1 encephalitis: a retrospective cohort study. Front Immunol 2022; 13: 918396
  • 37 Aurangzeb S, Symmonds M, Knight RK, Kennett R, Wehner T, Irani SR. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure 2017; 50: 14-17
  • 38 Chen C, Wang X, Zhang C. et al. Seizure semiology in leucine-rich glioma-inactivated protein 1 antibody-associated limbic encephalitis. Epilepsy Behav 2017; 77: 90-95
  • 39 Spatola M, Dalmau J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr Opin Neurol 2017; 30 (03) 345-353
  • 40 Thompson J, Bi M, Murchison AG. et al; Faciobrachial Dystonic Seizures Study Group. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018; 141 (02) 348-356
  • 41 Rodriguez A, Klein CJ, Sechi E. et al. LGI1 antibody encephalitis: acute treatment comparisons and outcome. J Neurol Neurosurg Psychiatry 2022; 93 (03) 309-315
  • 42 Byun JI, Lee ST, Jung KH. et al. Effect of immunotherapy on seizure outcome in patients with autoimmune encephalitis: a prospective observational registry study. PLoS One 2016; 11 (01) e0146455
  • 43 Gao L, Liu A, Zhan S. et al. Clinical characterization of autoimmune LGI1 antibody limbic encephalitis. Epilepsy Behav 2016; 56: 165-169
  • 44 Shen CH, Fang GL, Yang F. et al. Seizures and risk of epilepsy in anti-NMDAR, anti-LGI1, and anti-GABAB R encephalitis. Ann Clin Transl Neurol 2020; 7 (08) 1392-1399
  • 45 Alkabie S, Budhram A. Prolonged corticosteroids without maintenance immunotherapy for treatment of anti-LGI1 encephalitis: analysis of outcomes and relapse rate. Neurol Neuroimmunol Neuroinflamm 2023; 10 (03) e200115
  • 46 Finke C, Prüss H, Heine J. et al. Evaluation of cognitive deficits and structural hippocampal damage in encephalitis with leucine-rich, glioma-inactivated 1 antibodies. JAMA Neurol 2017; 74 (01) 50-59
  • 47 Galioto R, Aboseif A, Krishnan K, Lace J, Kunchok A. Cognitive outcomes in anti-LGI-1 encephalitis. J Int Neuropsychol Soc 2023; 29 (06) 541-550
  • 48 Galioto R, Grezmak T, Swetlik C. et al. Neuropsychological testing in autoimmune encephalitis: a scoping review. Neurol Neuroimmunol Neuroinflamm 2023; 11 (01) e200179
  • 49 Dalmau J, Armangué T, Planagumà J. et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 2019; 18 (11) 1045-1057
  • 50 Zhang H, Xiong W, Liu X, Liu W, Zhou D, Wu X. Long-term prognosis of patients with anti-N-methyl-D-aspartate receptor encephalitis who underwent teratoma removal: an observational study. Front Neurol 2022; 13: 874867
  • 51 Nosadini M, Eyre M, Molteni E. et al; International NMDAR Antibody Encephalitis Consensus Group. Use and safety of immunotherapeutic management of N-methyl-d-aspartate receptor antibody encephalitis: a meta-analysis. JAMA Neurol 2021; 78 (11) 1333-1344
  • 52 Gong X, Luo R, Liu J. et al. Efficacy and tolerability of intravenous immunoglobulin versus intravenous methylprednisolone treatment in anti-N-methyl-d-aspartate receptor encephalitis. Eur J Neurol 2022; 29 (04) 1117-1127
  • 53 Zhang Y, Liu G, Jiang M, Chen W, Su Y. Efficacy of therapeutic plasma exchange in patients with severe refractory anti-NMDA receptor encephalitis. Neurotherapeutics 2019; 16 (03) 828-837
  • 54 Nosadini M, Thomas T, Eyre M. et al. International consensus recommendations for the treatment of pediatric NMDAR antibody encephalitis. Neurol Neuroimmunol Neuroinflamm 2021; 8 (05) e1052
  • 55 Cai MT, Zheng Y, Wang S. et al. Clinical relevance of cerebrospinal fluid antibody titers in anti-N-methyl-d-aspartate receptor encephalitis. Brain Sci 2021; 12 (01) 4
  • 56 Lee WJ, Lee ST, Moon J. et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics 2016; 13 (04) 824-832
  • 57 Lee WJ, Lee ST, Shin YW. et al. Teratoma removal, steroid, IVIG, rituximab and tocilizumab (T-SIRT) in anti-NMDAR encephalitis. Neurotherapeutics 2021; 18 (01) 474-487
  • 58 Höftberger R, Titulaer MJ, Sabater L. et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013; 81 (17) 1500-1506
  • 59 McKay JH, Dimberg EL, Lopez Chiriboga AS. A systematic review of gamma-aminobutyric acid receptor type B autoimmunity. Neurol Neurochir Pol 2019; 53 (01) 1-7
  • 60 Lin J, Li C, Li A. et al. Encephalitis with antibodies against the GABAB receptor: high mortality and risk factors. Front Neurol 2019; 10: 1030
  • 61 Elisak M, Krysl D, Hanzalova J. et al. The prevalence of neural antibodies in temporal lobe epilepsy and the clinical characteristics of seropositive patients. Seizure 2018; 63: 1-6
  • 62 Falip M, Carreño M, Miró J. et al. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur J Neurol 2012; 19 (06) 827-833
  • 63 Giometto B, Nicolao P, Macucci M, Tavolato B, Foxon R, Bottazzo GF. Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet 1998; 352 (9126) 457
  • 64 Nóbrega-Jr AW, Gregory CP, Schlindwein-Zanini R. et al. Mesial temporal lobe epilepsy with hippocampal sclerosis is infrequently associated with neuronal autoantibodies. Epilepsia 2018; 59 (09) e152-e156
  • 65 Borusiak P, Bettendorf U, Wiegand G. et al. Autoantibodies to neuronal antigens in children with focal epilepsy and no prima facie signs of encephalitis. Eur J Paediatr Neurol 2016; 20 (04) 573-579
  • 66 Dubey D, Alqallaf A, Hays R. et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol 2017; 74 (04) 397-402
  • 67 Karaaslan Z, Ekizoğlu E, Tektürk P. et al. Investigation of neuronal auto-antibodies in systemic lupus erythematosus patients with epilepsy. Epilepsy Res 2017; 129: 132-137
  • 68 McKnight K, Jiang Y, Hart Y. et al. Serum antibodies in epilepsy and seizure-associated disorders. Neurology 2005; 65 (11) 1730-1736
  • 69 Falip M, Rodriguez-Bel L, Castañer S. et al. Musicogenic reflex seizures in epilepsy with glutamic acid decarbocylase antibodies. Acta Neurol Scand 2018; 137 (02) 272-276
  • 70 Malter MP, Frisch C, Zeitler H. et al. Treatment of immune-mediated temporal lobe epilepsy with GAD antibodies. Seizure 2015; 30: 57-63
  • 71 Malter MP, Helmstaedter C, Urbach H, Vincent A, Bien CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010; 67 (04) 470-478
  • 72 Muñoz-Lopetegi A, de Bruijn MAAM, Boukhrissi S. et al. Neurologic syndromes related to anti-GAD65: clinical and serologic response to treatment. Neurol Neuroimmunol Neuroinflamm 2020; 7 (03) e696
  • 73 Tröscher AR, Mair KM, Verdú de Juan L. et al. Temporal lobe epilepsy with GAD antibodies: neurons killed by T cells not by complement membrane attack complex. Brain 2023; 146 (04) 1436-1452
  • 74 Budhram A, Sechi E, Flanagan EP. et al. Clinical spectrum of high-titre GAD65 antibodies. J Neurol Neurosurg Psychiatry 2021; 92 (06) 645-654
  • 75 Carreño M, Bien CG, Asadi-Pooya AA. et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res 2017; 129: 101-105
  • 76 Smith KM, Britton JW, Thakolwiboon S. et al. Seizure characteristics and outcomes in patients with neurological conditions related to high-risk paraneoplastic antibodies. Epilepsia 2023; 64 (09) 2385-2398
  • 77 Graus F, Titulaer MJ, Balu R. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15 (04) 391-404
  • 78 Graus F, Escudero D, Oleaga L. et al. Syndrome and outcome of antibody-negative limbic encephalitis. Eur J Neurol 2018; 25 (08) 1011-1016
  • 79 Lee WJ, Lee HS, Kim DY. et al. Seronegative autoimmune encephalitis: clinical characteristics and factors associated with outcomes. Brain 2022; 145 (10) 3509-3521
  • 80 Dubey D, Singh J, Britton JW. et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia 2017; 58 (07) 1181-1189
  • 81 Benucci M, Tramacere L, Infantino M. et al. Efficacy of tocilizumab in limbic encephalitis with anti-CASPR2 antibodies. Case Rep Neurol Med 2020; 2020: 5697670
  • 82 Jaafar F, Haddad L, Koleilat N, Sharara-Chami R, Shbarou R. Super refractory status epilepticus secondary to anti-GAD antibody encephalitis successfully treated with aggressive immunotherapy. Epilepsy Behav Rep 2020; 14: 100396
  • 83 Randell RL, Adams AV, Van Mater H. Tocilizumab in refractory autoimmune encephalitis: a series of pediatric cases. Pediatr Neurol 2018; 86: 66-68
  • 84 Dinoto A, Cheli M, Bratina A, Sartori A, Manganotti P. Bortezomib in anti-N-methyl-d-aspartate-receptor (NMDA-R) encephalitis: a systematic review. J Neuroimmunol 2021; 356: 577586
  • 85 Shin YW, Lee ST, Kim TJ, Jun JS, Chu K. Bortezomib treatment for severe refractory anti-NMDA receptor encephalitis. Ann Clin Transl Neurol 2018; 5 (05) 598-605
  • 86 Eaton JE, Kleinholz-Owens P, Sriram S, Pawate S. Intrathecal methotrexate—another tool for the treatment of refractory autoimmune encephalitis—single institution cohort and literature review. J Neurol Sci 2021; 431: 120042
  • 87 Tatencloux S, Chretien P, Rogemond V, Honnorat J, Tardieu M, Deiva K. Intrathecal treatment of anti-N-methyl-D-aspartate receptor encephalitis in children. Dev Med Child Neurol 2015; 57 (01) 95-99
  • 88 Yang XZ, Zhu HD, Ren HT. et al. Utility and safety of intrathecal methotrexate treatment in severe anti-N-methyl-D-aspartate receptor encephalitis: a pilot study. Chin Med J (Engl) 2018; 131 (02) 156-160