Subscribe to RSS
DOI: 10.1055/a-2559-7565
Neuroimmunology and Sleep

Abstract
The immune system and sleep are inextricably linked in both health and pathological conditions. Tightly regulated neuroimmune processes are critical for the physiological maintenance of healthy sleep. Reciprocally, sleep disturbances can detrimentally affect immune homeostasis and predispose to increased risk of autoimmune conditions, which themselves are bidirectionally associated with a higher risk of sleep disturbances. Autoimmune diseases of the central nervous system (CNS), particularly conditions that affect neuroanatomical regions involved in sleep homeostasis and nocturnal respiration, are associated with an increased risk sleep disorders that may impact diagnosis, clinical course, and management. This review summarizes the bidirectional relationship between sleep and immunity and highlights several exemplar autoimmune conditions of the CNS that include sleep disorders as a consequence or diagnostic feature of the disorder.
Publication History
Article published online:
10 April 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci 2009; 10 (03) 199-210
- 2 Leonard WJ, Lin JX. Cytokine receptor signaling pathways. J Allergy Clin Immunol 2000; 105 (05) 877-888
- 3 Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9 (01) 46-56
- 4 Krueger JM, Obál FJ, Fang J, Kubota T, Taishi P. The role of cytokines in physiological sleep regulation. Ann N Y Acad Sci 2001; 933: 211-221
- 5 März P, Cheng JG, Gadient RA. et al. Sympathetic neurons can produce and respond to interleukin 6. Proc Natl Acad Sci U S A 1998; 95 (06) 3251-3256
- 6 Breder CD, Tsujimoto M, Terano Y, Scott DW, Saper CB. Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine central nervous system. J Comp Neurol 1993; 337 (04) 543-567
- 7 Breder CD, Dinarello CA, Saper CB. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 1988; 240 (4850): 321-324
- 8 Opp MR, Obal Jr F, Krueger JM. Interleukin 1 alters rat sleep: temporal and dose-related effects. Am J Physiol 1991; 260 (1 Pt 2): R52-R58
- 9 Opp MR, Krueger JM. Interleukin 1-receptor antagonist blocks interleukin 1-induced sleep and fever. Am J Physiol 1991; 260 (2 Pt 2): R453-R457
- 10 Fang J, Wang Y, Krueger JM. Effects of interleukin-1 beta on sleep are mediated by the type I receptor. Am J Physiol 1998; 274 (03) R655-R660
- 11 Rockstrom MD, Chen L, Taishi P. et al. Tumor necrosis factor alpha in sleep regulation. Sleep Med Rev 2018; 40: 69-78
- 12 Vgontzas AN, Zoumakis E, Lin HM, Bixler EO, Trakada G, Chrousos GP. Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-alpha antagonist. J Clin Endocrinol Metab 2004; 89 (09) 4409-4413
- 13 Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev 2019; 99 (03) 1325-1380
- 14 Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8 (07) 523-532
-
15
Nicolaides NC,
Vgontzas AN,
Kritikou I,
Chrousos G.
HPA axis and sleep. In: Feingold KR, Anawalt B, Blackman MR, et al, eds. Endotext; 2000.
- 16 Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci 2010; 1193: 48-59
- 17 Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch 2012; 463 (01) 121-137
- 18 Cohen S, Doyle WJ, Alper CM, Janicki-Deverts D, Turner RB. Sleep habits and susceptibility to the common cold. Arch Intern Med 2009; 169 (01) 62-67
- 19 Prather AA, Janicki-Deverts D, Hall MH, Cohen S. Behaviorally assessed sleep and susceptibility to the common cold. Sleep 2015; 38 (09) 1353-1359
- 20 Lange T, Dimitrov S, Bollinger T, Diekelmann S, Born J. Sleep after vaccination boosts immunological memory. J Immunol 2011; 187 (01) 283-290
- 21 Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452 (7186): 442-447
- 22 Besedovsky L, Cordi M, Wißlicen L, Martínez-Albert E, Born J, Rasch B. Hypnotic enhancement of slow-wave sleep increases sleep-associated hormone secretion and reduces sympathetic predominance in healthy humans. Commun Biol 2022; 5 (01) 747
- 23 Meazza C, Pagani S, Travaglino P, Bozzola M. Effect of growth hormone (GH) on the immune system. Pediatr Endocrinol Rev 2004; 1 (Suppl. 03) 490-495
- 24 Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 2009; 113 (21) 5134-5143
- 25 Dodt C, Breckling U, Derad I, Fehm HL, Born J. Plasma epinephrine and norepinephrine concentrations of healthy humans associated with nighttime sleep and morning arousal. Hypertension 1997; 30 (1 Pt 1): 71-76
- 26 Ottaway CA, Husband AJ. The influence of neuroendocrine pathways on lymphocyte migration. Immunol Today 1994; 15 (11) 511-517
- 27 Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol 2021; 21 (04) 233-243
- 28 van der Heijden CDCC, Groh L, Keating ST. et al. Catecholamines induce trained immunity in monocytes in vitro and in vivo. Circ Res 2020; 127 (02) 269-283
- 29 Parmeggiani PL. Thermoregulation and sleep. Front Biosci 2003; 8: s557-s567
- 30 Saint-Maurice PF, Freeman JR, Russ D. et al. Associations between actigraphy-measured sleep duration, continuity, and timing with mortality in the UK Biobank. Sleep 2024; 47 (03) zsad312
- 31 Michaud M, Balardy L, Moulis G. et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 2013; 14 (12) 877-882
- 32 Covassin N, Singh P. Sleep duration and cardiovascular disease risk: epidemiologic and experimental evidence. Sleep Med Clin 2016; 11 (01) 81-89
- 33 Rha MS, Kim CH, Yoon JH, Cho HJ. Association between the neutrophil-to-lymphocyte ratio and obstructive sleep apnea: a meta-analysis. Sci Rep 2020; 10 (01) 10862
- 34 Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol 2021; 4 (01) 1304
- 35 Wallin MT, Culpepper WJ, Campbell JD. et al; US Multiple Sclerosis Prevalence Workgroup. The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology 2019; 92 (10) e1029-e1040
- 36 Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 2017; 13 (01) 25-36
- 37 Lublin FD, Reingold SC. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 1996; 46 (04) 907-911
- 38 Kuhlmann T, Moccia M, Coetzee T. et al; International Advisory Committee on Clinical Trials in Multiple Sclerosis. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol 2023; 22 (01) 78-88
- 39 Absinta M, Sati P, Reich DS. Advanced MRI and staging of multiple sclerosis lesions. Nat Rev Neurol 2016; 12 (06) 358-368
- 40 Fransen NL, Hsiao CC, van der Poel M. et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 2020; 143 (06) 1714-1730
- 41 Stanton BR, Barnes F, Silber E. Sleep and fatigue in multiple sclerosis. Mult Scler 2006; 12 (04) 481-486
- 42 Braley TJ, Segal BM, Chervin RD. Obstructive sleep apnea and fatigue in patients with multiple sclerosis. J Clin Sleep Med 2014; 10 (02) 155-162
- 43 Brass SD, Li CS, Auerbach S. The underdiagnosis of sleep disorders in patients with multiple sclerosis. J Clin Sleep Med 2014; 10 (09) 1025-1031
- 44 Manconi M, Fabbrini M, Bonanni E. et al. High prevalence of restless legs syndrome in multiple sclerosis. Eur J Neurol 2007; 14 (05) 534-539
- 45 Manconi M, Rocca MA, Ferini-Strambi L. et al. Restless legs syndrome is a common finding in multiple sclerosis and correlates with cervical cord damage. Mult Scler 2008; 14 (01) 86-93
- 46 Zeng X, Dorstyn DS, Edwards G, Kneebone I. The prevalence of insomnia in multiple sclerosis: a meta-analysis. Sleep Med Rev 2023; 72: 101842
- 47 Pivovarova-Ramich O, Zimmermann HG, Paul F. Multiple sclerosis and circadian rhythms: can diet act as a treatment?. Acta Physiol (Oxf) 2023; 237 (04) e13939
- 48 Dubessy AL, Tezenas du Montcel S, Viala F. et al. Association of central hypersomnia and fatigue in patients with multiple sclerosis: a polysomnographic study. Neurology 2021; 97 (01) e23-e33
- 49 Braley TJ, Segal BM, Chervin RD. Sleep-disordered breathing in multiple sclerosis. Neurology 2012; 79 (09) 929-936
- 50 Pérez-Carbonell L, Iranzo A. Sleep disturbances in autoimmune neurological diseases. Curr Neurol Neurosci Rep 2023; 23 (10) 617-625
- 51 Krupp L. Fatigue is intrinsic to multiple sclerosis (MS) and is the most commonly reported symptom of the disease. Mult Scler 2006; 12 (04) 367-368
- 52 Krupp LB, Alvarez LA, LaRocca NG, Scheinberg LC. Fatigue in multiple sclerosis. Arch Neurol 1988; 45 (04) 435-437
- 53 Fiest KM, Fisk JD, Patten SB. et al; CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis (ECoMS). Comorbidity is associated with pain-related activity limitations in multiple sclerosis. Mult Scler Relat Disord 2015; 4 (05) 470-476
- 54 O'Connor AB, Schwid SR, Herrmann DN, Markman JD, Dworkin RH. Pain associated with multiple sclerosis: systematic review and proposed classification. Pain 2008; 137 (01) 96-111
- 55 Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 1991; 41 (05) 685-691
- 56 Valentine TR, Kratz AL, Kaplish N, Chervin RD, Braley TJ. Sleep-disordered breathing and neurocognitive function in multiple sclerosis: differential associations across cognitive domains. Mult Scler 2023; 29 (07) 832-845
- 57 Amtmann D, Askew RL, Kim J. et al. Pain affects depression through anxiety, fatigue, and sleep in multiple sclerosis. Rehabil Psychol 2015; 60 (01) 81-90
- 58 Braley TJ, Kratz AL, Kaplish N, Chervin RD. Sleep and cognitive function in multiple sclerosis. Sleep 2016; 39 (08) 1525-1533
- 59 Côté I, Trojan DA, Kaminska M. et al. Impact of sleep disorder treatment on fatigue in multiple sclerosis. Mult Scler 2013; 19 (04) 480-489
- 60 Hu L, Wang EJ. Sleep as a therapeutic target for pain management. Curr Pain Headache Rep 2023; 27 (06) 131-141
- 61 Hedström AK, Åkerstedt T, Hillert J, Olsson T, Alfredsson L. Shift work at young age is associated with increased risk for multiple sclerosis. Ann Neurol 2011; 70 (05) 733-741
- 62 Åkerstedt T, Olsson T, Alfredsson L, Hedström AK. Insufficient sleep during adolescence and risk of multiple sclerosis: results from a Swedish case-control study. J Neurol Neurosurg Psychiatry 2023; 94 (05) 331-336
- 63 Hedström AK, Åkerstedt T, Olsson T, Alfredsson L. Shift work influences multiple sclerosis risk. Mult Scler 2015; 21 (09) 1195-1199
- 64 Palma JA, Urrestarazu E, Iriarte J. Sleep loss as risk factor for neurologic disorders: a review. Sleep Med 2013; 14 (03) 229-236
- 65 Castanon-Cervantes O, Wu M, Ehlen JC. et al Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 2010; 185 (10) 5796-5805
- 66 Sahraian MA, Rezaali S, Hosseiny M, Doosti R, Tajik A, Naser Moghadasi A. Sleep disorder as a triggering factor for relapse in multiple sclerosis. Eur Neurol 2017; 77 (5-6): 258-261
- 67 Braley TJ, Shieu MM, Zaheed AB, Dunietz GL. Pathways between multiple sclerosis, sleep disorders, and cognitive function: longitudinal findings from The Nurses' Health Study. Mult Scler 2023; 29 (03) 436-446
- 68 Whibley D, Shieu MM, Dunietz GL, Braley TJ. Sleep disturbances and progression of mobility disability: longitudinal findings from the Nurses' Health Study. Sleep Epidemiol 2024; 4: 4
- 69 Buratti L, Iacobucci DE, Viticchi G. et al. Sleep quality can influence the outcome of patients with multiple sclerosis. Sleep Med 2019; 58: 56-60
- 70 Siengsukon CF, Alshehri M, Williams C, Drerup M, Lynch S. Feasibility and treatment effect of cognitive behavioral therapy for insomnia in individuals with multiple sclerosis: a pilot randomized controlled trial. Mult Scler Relat Disord 2020; 40: 101958
- 71 Khadadah S, Kimoff RJ, Duquette P. et al. Effect of continuous positive airway pressure treatment of obstructive sleep apnea-hypopnea in multiple sclerosis: a randomized, double-blind, placebo-controlled trial (SAMS-PAP study). Mult Scler 2022; 28 (01) 82-92
- 72 Azarbarzin A, Sands SA, Stone KL. et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: the Osteoporotic Fractures in Men Study and the Sleep Heart Health Study. Eur Heart J 2019; 40 (14) 1149-1157
- 73 Javaheri S, Redline S. Insomnia and risk of cardiovascular disease. Chest 2017; 152 (02) 435-444
- 74 Gottlieb DJ, Yenokyan G, Newman AB. et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 2010; 122 (04) 352-360
- 75 Marrie RA, Rudick R, Horwitz R. et al. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 2010; 74 (13) 1041-1047
- 76 Graus F, Titulaer MJ, Balu R. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15 (04) 391-404
- 77 Blattner MS, de Bruin GS, Bucelli RC, Day GS. Sleep disturbances are common in patients with autoimmune encephalitis. J Neurol 2019; 266 (04) 1007-1015
- 78 Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder?. Neurol Neuroimmunol Neuroinflamm 2015; 2 (01) e62
- 79 Jarius S, Aktas O, Ayzenberg I. et al; Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: diagnosis and differential diagnosis. J Neurol 2023; 270 (07) 3341-3368
- 80 Kümpfel T, Giglhuber K, Aktas O. et al; Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: attack therapy and long-term management. J Neurol 2024; 271 (01) 141-176
- 81 Jarius S, Wildemann B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 2010; 6 (07) 383-392
- 82 Okuma H, Matsumura K, Hatanaka Y, Saito F, Sonoo M. Sudden onset of sleep due to hypothalamic lesions in neuromyelitis optica spectrum disorder positive for anti-aquaporin-4 antibody. Mult Scler 2014; 20 (10) 1407-1408
- 83 Beigneux Y, Arnulf I, Guillaume-Jugnot P. et al. Secondary hypersomnia as an initial manifestation of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2020; 38: 101869
- 84 Kanbayashi T, Shimohata T, Nakashima I. et al. Symptomatic narcolepsy in patients with neuromyelitis optica and multiple sclerosis: new neurochemical and immunological implications. Arch Neurol 2009; 66 (12) 1563-1566
- 85 Pittock SJ, Lennon VA, Krecke K, Wingerchuk DM, Lucchinetti CF, Weinshenker BG. Brain abnormalities in neuromyelitis optica. Arch Neurol 2006; 63 (03) 390-396
- 86 Baba T, Nakashima I, Kanbayashi T. et al. Narcolepsy as an initial manifestation of neuromyelitis optica with anti-aquaporin-4 antibody. J Neurol 2009; 256 (02) 287-288
- 87 Nozaki H, Shimohata T, Kanbayashi T. et al. A patient with anti-aquaporin 4 antibody who presented with recurrent hypersomnia, reduced orexin (hypocretin) level, and symmetrical hypothalamic lesions. Sleep Med 2009; 10 (02) 253-255
- 88 Deguchi K, Kono S, Deguchi S. et al. A patient with anti-aquaporin 4 antibody presenting hypersomnolence as the initial symptom and symmetrical hypothalamic lesions. J Neurol Sci 2012; 312 (1-2): 18-20
- 89 Yin D, Chen S, Liu J. Sleep disturbances in autoimmune neurologic diseases: manifestation and pathophysiology. Front Neurosci 2021; 15: 687536
- 90 Shaygannejad V, Sadeghi Bahmani D, Soleimani P. et al. Comparison of prevalence rates of restless legs syndrome, self-assessed risks of obstructive sleep apnea, and daytime sleepiness among patients with multiple sclerosis (MS), clinically isolated syndrome (CIS) and Neuromyelitis Optica Spectrum Disorder (NMOSD). Sleep Med 2020; 70: 97-105
- 91 Hyun JW, Kim SH, Jeong IH. et al. Increased frequency and severity of restless legs syndrome in patients with neuromyelitis optica spectrum disorder. Sleep Med 2016; 17: 121-123
- 92 Uzawa A, Oertel FC, Mori M, Paul F, Kuwabara S. NMOSD and MOGAD: an evolving disease spectrum. Nat Rev Neurol 2024; 20 (10) 602-619
- 93 Banwell B, Bennett JL, Marignier R. et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol 2023; 22 (03) 268-282
- 94 Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol 2019; 15 (02) 89-102
- 95 Sechi E, Flanagan EP, Naddaf E. et al Neurologic manifestations in hospitalized patients with COVID-19: The Mayo Clinic experience. Neurology 2021; 97 (11) e1097-e1109
- 96 Liu X, Ma Y, Ouyang R. et al. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J Neuroinflammation 2020; 17 (01) 229
-
97
Ladakis DC,
Gould J,
Khazen JM.
et al.
Fatigue is a common symptom in myelin oligodendrocyte glycoprotein antibody disease. Mult Scler J Exp Transl Clin 2022; 8(04):20552173221131235
- 98 Sabater L, Gaig C, Gelpi E. et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014; 13 (06) 575-586
- 99 Graus F, Sabater L, Gaig C. et al. Anti-IgLON5 disease 10 years later: what we know and what we do not know. Neurol Neuroimmunol Neuroinflamm 2025; 12 (01) e200353
- 100 Berger-Sieczkowski E, Endmayr V, Haider C. et al. Analysis of inflammatory markers and tau deposits in an autopsy series of nine patients with anti-IgLON5 disease. Acta Neuropathol 2023; 146 (04) 631-645
- 101 Gaig C, Sabater L. Clinical presentations and antibody mechanisms in anti-IgLON5 disease. Rev Neurol (Paris) 2024; 180 (09) 940-949
- 102 Gaig C, Sabater L. New knowledge on anti-IgLON5 disease. Curr Opin Neurol 2024; 37 (03) 316-321
- 103 Gaig C, Ercilla G, Daura X. et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol Neuroimmunol Neuroinflamm 2019; 6 (06) e605
- 104 Honorat JA, Komorowski L, Josephs KA. et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol Neuroimmunol Neuroinflamm 2017; 4 (05) e385
- 105 Devine MF, St Louis EK. Sleep disturbances associated with neurological autoimmunity. Neurotherapeutics 2021; 18 (01) 181-201
- 106 Iranzo A. Sleep and neurological autoimmune diseases. Neuropsychopharmacology 2020; 45 (01) 129-140
- 107 Gaig C, Iranzo A, Cajochen C. et al. Characterization of the sleep disorder of anti-IgLON5 disease. Sleep 2019; 42 (09) zsz133
- 108 Gaig C, Graus F, Compta Y. et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017; 88 (18) 1736-1743
- 109 Gaig C, Iranzo A, Santamaria J, Graus F. The sleep disorder in anti-lgLON5 disease. Curr Neurol Neurosci Rep 2018; 18 (07) 41
- 110 Grüter T, Behrendt V, Bien CI, Gold R, Ayzenberg I. Early immunotherapy is highly effective in IgG1/IgG4 positive IgLON5 disease. J Neurol 2020; 267 (07) 2151-2153
- 111 Josephs KA, Silber MH, Fealey RD, Nippoldt TB, Auger RG, Vernino S. Neurophysiologic studies in Morvan syndrome. J Clin Neurophysiol 2004; 21 (06) 440-445
- 112 Moura J, Samões R, Cardoso M. et al. Distinct phenotypes in a cohort of anti-CASPR2 associated neurological syndromes. Clin Neurol Neurosurg 2023; 234: 107994
- 113 van Sonderen A, Ariño H, Petit-Pedrol M. et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016; 87 (05) 521-528
- 114 Thaler FS, Zimmermann L, Kammermeier S. et al; German Network for Research on Autoimmune Encephalitis (GENERATE). Rituximab treatment and long-term outcome of patients with autoimmune encephalitis: real-world evidence from the GENERATE Registry. Neurol Neuroimmunol Neuroinflamm 2021; 8 (06) e1088
- 115 Comperat L, Pegat A, Honnorat J, Joubert B. Autoimmune neuromyotonia. Curr Opin Neurol 2022; 35 (05) 597-603
- 116 Benoit J, Muñiz-Castrillo S, Vogrig A. et al. Early-stage contactin-associated protein-like 2 limbic encephalitis: clues for diagnosis. Neurol Neuroimmunol Neuroinflamm 2022; 10 (01) e200041
- 117 Muñiz-Castrillo S, Joubert B, Elsensohn MH. et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J Neurol Neurosurg Psychiatry 2020; 91 (10) 1076-1084
- 118 Boyko M, Au KLK, Casault C, de Robles P, Pfeffer G. Systematic review of the clinical spectrum of CASPR2 antibody syndrome. J Neurol 2020; 267 (04) 1137-1146
- 119 Liguori R, Vincent A, Clover L. et al. Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 2001; 124 (Pt 12): 2417-2426
- 120 Irani SR, Pettingill P, Kleopa KA. et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012; 72 (02) 241-255
- 121 Laurencin C, André-Obadia N, Camdessanché JP. et al. Peripheral small fiber dysfunction and neuropathic pain in patients with Morvan syndrome. Neurology 2015; 85 (23) 2076-2078
- 122 Swayang PS, Nalini A, Preethish-Kumar V. et al. CASPR2-related Morvan syndrome: autonomic, polysomnographic, and neuropsychological observations. Neurol Clin Pract 2021; 11 (03) e267-e276
- 123 Montagna P, Lugaresi E. Agrypnia Excitata: a generalized overactivity syndrome and a useful concept in the neurophysiopathology of sleep. Clin Neurophysiol 2002; 113 (04) 552-560
- 124 Sveinsson O, Al Nimer F, Piehl F. Morvan's syndrome treated successfully with rituximab and lacosamide. BMJ Case Rep 2019; 12 (02) e226832
- 125 Sveinsson O, Piehl F, Aspegren O, Hietala MA. Successful combined treatment with thymectomy, rituximab and tocilizumab for severe thymoma-associated multi autoimmune syndrome. J Neuroimmunol 2019; 336: 577028
- 126 Irani SR, Alexander S, Waters P. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain 2010; 133 (09) 2734-2748
- 127 Roberto KT, Espiritu AI, Fernandez MLL, Gutierrez JC. Electroencephalographic findings in antileucine-rich glioma-inactivated 1 (LGI1) autoimmune encephalitis: a systematic review. Epilepsy Behav 2020; 112: 107462
- 128 van Sonderen A, Thijs RD, Coenders EC. et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016; 87 (14) 1449-1456
- 129 Lin N. et al Sleep disorders in leucine-rich glioma-inactivated protein 1 and contactin protein-like 2 antibody-associated diseases. Front Neurol 2020; 11: 696
- 130 Florance NR, Davis RL, Lam C. et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009; 66 (01) 11-18
- 131 Al-Diwani A, Handel A, Townsend L. et al. The psychopathology of NMDAR-antibody encephalitis in adults: a systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry 2019; 6 (03) 235-246
- 132 Dalmau J, Gleichman AJ, Hughes EG. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008; 7 (12) 1091-1098
- 133 Brunet de Courssou JB, Testard P, Sallansonnet-Froment M. et al. Narcolepsy secondary to anti-Ma2 encephalitis: two case reports. J Clin Sleep Med 2023; 19 (04) 837-841
- 134 Dalmau J, Graus F, Villarejo A. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004; 127 (Pt 8): 1831-1844
- 135 Compta Y, Iranzo A, Santamaría J, Casamitjana R, Graus F. REM sleep behavior disorder and narcoleptic features in anti-Ma2-associated encephalitis. Sleep 2007; 30 (06) 767-769
- 136 Muñoz-Lopetegi A, Graus F, Dalmau J, Santamaria J. Sleep disorders in autoimmune encephalitis. Lancet Neurol 2020; 19 (12) 1010-1022
- 137 Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011; 10 (01) 63-74
- 138 Höftberger R, van Sonderen A, Leypoldt F. et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 2015; 84 (24) 2403-2412